Su4374651's picture
Update app.py
aa91235 verified
raw
history blame
4.53 kB
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Tuple
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer, util
import numpy as np
import faiss
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
class MyApp:
def __init__(self) -> None:
self.documents = []
self.embeddings = None
self.index = None
self.load_pdf("YOURPDFFILE")
self.build_vector_db()
def load_pdf(self, file_path: str) -> None:
"""Extracts text from a PDF file and stores it in the app's documents."""
doc = fitz.open(file_path)
self.documents = []
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text()
self.documents.append({"page": page_num + 1, "content": text})
print("PDF processed successfully!")
def build_vector_db(self) -> None:
"""Builds a vector database using the content of the PDF."""
model = SentenceTransformer('all-MiniLM-L6-v2')
# Generate embeddings for all document contents
self.embeddings = model.encode([doc["content"] for doc in self.documents])
# Create a FAISS index
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
# Add the embeddings to the index
self.index.add(np.array(self.embeddings))
print("Vector database built successfully!")
def search_documents(self, query: str, k: int = 3) -> List[str]:
"""Searches for relevant documents using vector similarity."""
model = SentenceTransformer('all-MiniLM-L6-v2')
# Generate an embedding for the query
query_embedding = model.encode([query])
# Perform a search in the FAISS index
D, I = self.index.search(np.array(query_embedding), k)
# Retrieve the top-k documents
results = [self.documents[i]["content"] for i in I[0]]
return results if results else ["No relevant documents found."]
app = MyApp()
def respond(
message: str,
history: List[Tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
system_message = "I’m a Job Interview Prep Coach, specializing in personalized strategies to boost interview performance. I offer resume reviews, mock interviews, and expert advice to help you land your ideal job confidently."
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# RAG - Retrieve relevant documents
retrieved_docs = app.search_documents(message)
context = "\n".join(retrieved_docs)
messages.append({"role": "system", "content": "Relevant documents: " + context})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.Blocks()
with demo:
gr.Markdown("🧘‍♀️ **Job Interview Prep Coach**")
gr.Markdown(
"‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
"We are not medical practitioners, and the use of this chatbot is at your own responsibility.‼️"
)
chatbot = gr.ChatInterface(
respond,
examples=[
["How can I effectively prepare for a job interview?"],
["What are the most common interview questions, and how should I answer them?"],
["How can I improve my resume and cover letter to increase my chances of getting an interview?"],
["What should I do if I get a difficult or unexpected question during an interview?"],
["How can I demonstrate my skills and experiences effectively during the interview?"],
["How do I handle interview nerves and maintain confidence throughout the process"],
["What questions should I ask the interviewer to make a positive impression?"],
["How can I tailor my answers to align with the company’s values and culture?."]
],
title='Job Interview Prep Coach'
)
if __name__ == "__main__":
demo.launch()