File size: 14,724 Bytes
e679d69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import json
import os
import time
import warnings
from concurrent.futures import ThreadPoolExecutor
from logging import getLogger
from threading import Lock
from typing import Dict, Generator, List, Optional, Tuple, Union

import requests

from lagent.schema import ModelStatusCode
from lagent.utils.util import filter_suffix
from .base_api import BaseAPILLM

warnings.simplefilter('default')

SENSENOVA_API_BASE = 'https://api.sensenova.cn/v1/llm/chat-completions'

sensechat_models = {'SenseChat-5': 131072, 'SenseChat-5-Cantonese': 32768}


class SensenovaAPI(BaseAPILLM):
    """Model wrapper around SenseTime's models.

    Args:
        model_type (str): The name of SenseTime's model.
        retry (int): Number of retires if the API call fails. Defaults to 2.
        key (str or List[str]): SenseTime key(s). In particular, when it
            is set to "ENV", the key will be fetched from the environment
            variable $SENSENOVA_API_KEY. If it's a list, the keys will be
            used in round-robin manner. Defaults to 'ENV'.
        meta_template (Dict, optional): The model's meta prompt
            template if needed, in case the requirement of injecting or
            wrapping of any meta instructions.
        sensenova_api_base (str): The base url of SenseTime's API. Defaults to
            'https://api.sensenova.cn/v1/llm/chat-completions'.
        gen_params: Default generation configuration which could be overridden
            on the fly of generation.
    """

    is_api: bool = True

    def __init__(
        self,
        model_type: str = 'SenseChat-5-Cantonese',
        retry: int = 2,
        json_mode: bool = False,
        key: Union[str, List[str]] = 'ENV',
        meta_template: Optional[Dict] = [
            dict(role='system', api_role='system'),
            dict(role='user', api_role='user'),
            dict(role='assistant', api_role='assistant'),
            dict(role='environment', api_role='system'),
        ],
        sensenova_api_base: str = SENSENOVA_API_BASE,
        proxies: Optional[Dict] = None,
        **gen_params,
    ):

        super().__init__(
            model_type=model_type,
            meta_template=meta_template,
            retry=retry,
            **gen_params,
        )
        self.logger = getLogger(__name__)

        if isinstance(key, str):
            # First, apply for SenseNova's ak and sk from SenseTime staff
            # Then, generated SENSENOVA_API_KEY using lagent.utils.gen_key.auto_gen_jwt_token(ak, sk)
            self.keys = [
                os.getenv('SENSENOVA_API_KEY') if key == 'ENV' else key
            ]
        else:
            self.keys = key

        # record invalid keys and skip them when requesting API
        # - keys have insufficient_quota
        self.invalid_keys = set()

        self.key_ctr = 0
        self.url = sensenova_api_base
        self.model_type = model_type
        self.proxies = proxies
        self.json_mode = json_mode

    def chat(
        self,
        inputs: Union[List[dict], List[List[dict]]],
        **gen_params,
    ) -> Union[str, List[str]]:
        """Generate responses given the contexts.

        Args:
            inputs (Union[List[dict], List[List[dict]]]): a list of messages
                or list of lists of messages
            gen_params: additional generation configuration

        Returns:
            Union[str, List[str]]: generated string(s)
        """
        assert isinstance(inputs, list)
        if 'max_tokens' in gen_params:
            raise NotImplementedError('unsupported parameter: max_tokens')
        gen_params = {**self.gen_params, **gen_params}
        with ThreadPoolExecutor(max_workers=20) as executor:
            tasks = [
                executor.submit(self._chat,
                                self.template_parser._prompt2api(messages),
                                **gen_params)
                for messages in (
                    [inputs] if isinstance(inputs[0], dict) else inputs)
            ]
        ret = [task.result() for task in tasks]
        return ret[0] if isinstance(inputs[0], dict) else ret

    def stream_chat(
        self,
        inputs: List[dict],
        **gen_params,
    ) -> Generator[Tuple[ModelStatusCode, str, Optional[str]], None, None]:
        """Generate responses given the contexts.

        Args:
            inputs (List[dict]): a list of messages
            gen_params: additional generation configuration

        Yields:
            Tuple[ModelStatusCode, str, Optional[str]]: Status code, generated string, and optional metadata
        """
        assert isinstance(inputs, list)
        if 'max_tokens' in gen_params:
            raise NotImplementedError('unsupported parameter: max_tokens')
        gen_params = self.update_gen_params(**gen_params)
        gen_params['stream'] = True

        resp = ''
        finished = False
        stop_words = gen_params.get('stop_words') or []
        messages = self.template_parser._prompt2api(inputs)
        for text in self._stream_chat(messages, **gen_params):
            # TODO 测试 resp = text 还是 resp += text
            resp += text
            if not resp:
                continue
            # remove stop_words
            for sw in stop_words:
                if sw in resp:
                    resp = filter_suffix(resp, stop_words)
                    finished = True
                    break
            yield ModelStatusCode.STREAM_ING, resp, None
            if finished:
                break
        yield ModelStatusCode.END, resp, None

    def _chat(self, messages: List[dict], **gen_params) -> str:
        """Generate completion from a list of templates.

        Args:
            messages (List[dict]): a list of prompt dictionaries
            gen_params: additional generation configuration

        Returns:
            str: The generated string.
        """
        assert isinstance(messages, list)

        header, data = self.generate_request_data(
            model_type=self.model_type,
            messages=messages,
            gen_params=gen_params,
            json_mode=self.json_mode,
        )

        max_num_retries = 0
        while max_num_retries < self.retry:
            self._wait()

            with Lock():
                if len(self.invalid_keys) == len(self.keys):
                    raise RuntimeError('All keys have insufficient quota.')

                # find the next valid key
                while True:
                    self.key_ctr += 1
                    if self.key_ctr == len(self.keys):
                        self.key_ctr = 0

                    if self.keys[self.key_ctr] not in self.invalid_keys:
                        break

                key = self.keys[self.key_ctr]
                header['Authorization'] = f'Bearer {key}'

            response = dict()
            try:
                raw_response = requests.post(
                    self.url,
                    headers=header,
                    data=json.dumps(data),
                    proxies=self.proxies,
                )
                response = raw_response.json()
                return response['choices'][0]['message']['content'].strip()
            except requests.ConnectionError:
                print('Got connection error, retrying...')
                continue
            except requests.JSONDecodeError:
                print('JsonDecode error, got', str(raw_response.content))
                continue
            except KeyError:
                if 'error' in response:
                    if response['error']['code'] == 'rate_limit_exceeded':
                        time.sleep(1)
                        continue
                    elif response['error']['code'] == 'insufficient_quota':
                        self.invalid_keys.add(key)
                        self.logger.warn(f'insufficient_quota key: {key}')
                        continue

                    print('Find error message in response: ',
                          str(response['error']))
            except Exception as error:
                print(str(error))
            max_num_retries += 1

        raise RuntimeError('Calling SenseTime failed after retrying for '
                           f'{max_num_retries} times. Check the logs for '
                           'details.')

    def _stream_chat(self, messages: List[dict], **gen_params) -> str:
        """Generate completion from a list of templates.

        Args:
            messages (List[dict]): a list of prompt dictionaries
            gen_params: additional generation configuration

        Returns:
            str: The generated string.
        """

        def streaming(raw_response):
            for chunk in raw_response.iter_lines():
                if chunk:
                    try:
                        decoded_chunk = chunk.decode('utf-8')
                        # print(f"Decoded chunk: {decoded_chunk}")

                        if decoded_chunk == 'data:[DONE]':
                            # print("Stream ended")
                            break

                        if decoded_chunk.startswith('data:'):
                            json_str = decoded_chunk[5:]
                            chunk_data = json.loads(json_str)

                            if 'data' in chunk_data and 'choices' in chunk_data[
                                    'data']:
                                choice = chunk_data['data']['choices'][0]
                                if 'delta' in choice:
                                    content = choice['delta']
                                    yield content
                        else:
                            print(f'Unexpected format: {decoded_chunk}')

                    except json.JSONDecodeError as e:
                        print(f'JSON parsing error: {e}')
                    except Exception as e:
                        print(
                            f'An error occurred while processing the chunk: {e}'
                        )

        assert isinstance(messages, list)

        header, data = self.generate_request_data(
            model_type=self.model_type,
            messages=messages,
            gen_params=gen_params,
            json_mode=self.json_mode,
        )

        max_num_retries = 0
        while max_num_retries < self.retry:
            if len(self.invalid_keys) == len(self.keys):
                raise RuntimeError('All keys have insufficient quota.')

            # find the next valid key
            while True:
                self.key_ctr += 1
                if self.key_ctr == len(self.keys):
                    self.key_ctr = 0

                if self.keys[self.key_ctr] not in self.invalid_keys:
                    break

            key = self.keys[self.key_ctr]
            header['Authorization'] = f'Bearer {key}'

            response = dict()
            try:
                raw_response = requests.post(
                    self.url,
                    headers=header,
                    data=json.dumps(data),
                    proxies=self.proxies,
                )
                return streaming(raw_response)
            except requests.ConnectionError:
                print('Got connection error, retrying...')
                continue
            except requests.JSONDecodeError:
                print('JsonDecode error, got', str(raw_response.content))
                continue
            except KeyError:
                if 'error' in response:
                    if response['error']['code'] == 'rate_limit_exceeded':
                        time.sleep(1)
                        continue
                    elif response['error']['code'] == 'insufficient_quota':
                        self.invalid_keys.add(key)
                        self.logger.warn(f'insufficient_quota key: {key}')
                        continue

                    print('Find error message in response: ',
                          str(response['error']))
            except Exception as error:
                print(str(error))
            max_num_retries += 1

        raise RuntimeError('Calling SenseTime failed after retrying for '
                           f'{max_num_retries} times. Check the logs for '
                           'details.')

    def generate_request_data(self,
                              model_type,
                              messages,
                              gen_params,
                              json_mode=False):
        """
        Generates the request data for different model types.

        Args:
            model_type (str): The type of the model (e.g., 'sense').
            messages (list): The list of messages to be sent to the model.
            gen_params (dict): The generation parameters.
            json_mode (bool): Flag to determine if the response format should be JSON.

        Returns:
            tuple: A tuple containing the header and the request data.
        """
        # Copy generation parameters to avoid modifying the original dictionary
        gen_params = gen_params.copy()

        # Hold out 100 tokens due to potential errors in token calculation
        max_tokens = min(gen_params.pop('max_new_tokens'), 4096)
        if max_tokens <= 0:
            return '', ''

        # Initialize the header
        header = {
            'content-type': 'application/json',
        }

        # Common parameters processing
        gen_params['max_tokens'] = max_tokens
        if 'stop_words' in gen_params:
            gen_params['stop'] = gen_params.pop('stop_words')
        if 'repetition_penalty' in gen_params:
            gen_params['frequency_penalty'] = gen_params.pop(
                'repetition_penalty')

        # Model-specific processing
        data = {}
        if model_type.lower().startswith('sense'):
            gen_params.pop('skip_special_tokens', None)
            gen_params.pop('session_id', None)
            data = {
                'model': model_type,
                'messages': messages,
                'n': 1,
                **gen_params
            }
            if json_mode:
                data['response_format'] = {'type': 'json_object'}
        else:
            raise NotImplementedError(
                f'Model type {model_type} is not supported')

        return header, data

    def tokenize(self, prompt: str) -> list:
        """Tokenize the input prompt.

        Args:
            prompt (str): Input string.

        Returns:
            list: token ids
        """
        import tiktoken

        self.tiktoken = tiktoken
        enc = self.tiktoken.encoding_for_model('gpt-4o')
        return enc.encode(prompt)