Spaces:
Running
Running
File size: 14,724 Bytes
e679d69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import json
import os
import time
import warnings
from concurrent.futures import ThreadPoolExecutor
from logging import getLogger
from threading import Lock
from typing import Dict, Generator, List, Optional, Tuple, Union
import requests
from lagent.schema import ModelStatusCode
from lagent.utils.util import filter_suffix
from .base_api import BaseAPILLM
warnings.simplefilter('default')
SENSENOVA_API_BASE = 'https://api.sensenova.cn/v1/llm/chat-completions'
sensechat_models = {'SenseChat-5': 131072, 'SenseChat-5-Cantonese': 32768}
class SensenovaAPI(BaseAPILLM):
"""Model wrapper around SenseTime's models.
Args:
model_type (str): The name of SenseTime's model.
retry (int): Number of retires if the API call fails. Defaults to 2.
key (str or List[str]): SenseTime key(s). In particular, when it
is set to "ENV", the key will be fetched from the environment
variable $SENSENOVA_API_KEY. If it's a list, the keys will be
used in round-robin manner. Defaults to 'ENV'.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
sensenova_api_base (str): The base url of SenseTime's API. Defaults to
'https://api.sensenova.cn/v1/llm/chat-completions'.
gen_params: Default generation configuration which could be overridden
on the fly of generation.
"""
is_api: bool = True
def __init__(
self,
model_type: str = 'SenseChat-5-Cantonese',
retry: int = 2,
json_mode: bool = False,
key: Union[str, List[str]] = 'ENV',
meta_template: Optional[Dict] = [
dict(role='system', api_role='system'),
dict(role='user', api_role='user'),
dict(role='assistant', api_role='assistant'),
dict(role='environment', api_role='system'),
],
sensenova_api_base: str = SENSENOVA_API_BASE,
proxies: Optional[Dict] = None,
**gen_params,
):
super().__init__(
model_type=model_type,
meta_template=meta_template,
retry=retry,
**gen_params,
)
self.logger = getLogger(__name__)
if isinstance(key, str):
# First, apply for SenseNova's ak and sk from SenseTime staff
# Then, generated SENSENOVA_API_KEY using lagent.utils.gen_key.auto_gen_jwt_token(ak, sk)
self.keys = [
os.getenv('SENSENOVA_API_KEY') if key == 'ENV' else key
]
else:
self.keys = key
# record invalid keys and skip them when requesting API
# - keys have insufficient_quota
self.invalid_keys = set()
self.key_ctr = 0
self.url = sensenova_api_base
self.model_type = model_type
self.proxies = proxies
self.json_mode = json_mode
def chat(
self,
inputs: Union[List[dict], List[List[dict]]],
**gen_params,
) -> Union[str, List[str]]:
"""Generate responses given the contexts.
Args:
inputs (Union[List[dict], List[List[dict]]]): a list of messages
or list of lists of messages
gen_params: additional generation configuration
Returns:
Union[str, List[str]]: generated string(s)
"""
assert isinstance(inputs, list)
if 'max_tokens' in gen_params:
raise NotImplementedError('unsupported parameter: max_tokens')
gen_params = {**self.gen_params, **gen_params}
with ThreadPoolExecutor(max_workers=20) as executor:
tasks = [
executor.submit(self._chat,
self.template_parser._prompt2api(messages),
**gen_params)
for messages in (
[inputs] if isinstance(inputs[0], dict) else inputs)
]
ret = [task.result() for task in tasks]
return ret[0] if isinstance(inputs[0], dict) else ret
def stream_chat(
self,
inputs: List[dict],
**gen_params,
) -> Generator[Tuple[ModelStatusCode, str, Optional[str]], None, None]:
"""Generate responses given the contexts.
Args:
inputs (List[dict]): a list of messages
gen_params: additional generation configuration
Yields:
Tuple[ModelStatusCode, str, Optional[str]]: Status code, generated string, and optional metadata
"""
assert isinstance(inputs, list)
if 'max_tokens' in gen_params:
raise NotImplementedError('unsupported parameter: max_tokens')
gen_params = self.update_gen_params(**gen_params)
gen_params['stream'] = True
resp = ''
finished = False
stop_words = gen_params.get('stop_words') or []
messages = self.template_parser._prompt2api(inputs)
for text in self._stream_chat(messages, **gen_params):
# TODO 测试 resp = text 还是 resp += text
resp += text
if not resp:
continue
# remove stop_words
for sw in stop_words:
if sw in resp:
resp = filter_suffix(resp, stop_words)
finished = True
break
yield ModelStatusCode.STREAM_ING, resp, None
if finished:
break
yield ModelStatusCode.END, resp, None
def _chat(self, messages: List[dict], **gen_params) -> str:
"""Generate completion from a list of templates.
Args:
messages (List[dict]): a list of prompt dictionaries
gen_params: additional generation configuration
Returns:
str: The generated string.
"""
assert isinstance(messages, list)
header, data = self.generate_request_data(
model_type=self.model_type,
messages=messages,
gen_params=gen_params,
json_mode=self.json_mode,
)
max_num_retries = 0
while max_num_retries < self.retry:
self._wait()
with Lock():
if len(self.invalid_keys) == len(self.keys):
raise RuntimeError('All keys have insufficient quota.')
# find the next valid key
while True:
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
if self.keys[self.key_ctr] not in self.invalid_keys:
break
key = self.keys[self.key_ctr]
header['Authorization'] = f'Bearer {key}'
response = dict()
try:
raw_response = requests.post(
self.url,
headers=header,
data=json.dumps(data),
proxies=self.proxies,
)
response = raw_response.json()
return response['choices'][0]['message']['content'].strip()
except requests.ConnectionError:
print('Got connection error, retrying...')
continue
except requests.JSONDecodeError:
print('JsonDecode error, got', str(raw_response.content))
continue
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(1)
continue
elif response['error']['code'] == 'insufficient_quota':
self.invalid_keys.add(key)
self.logger.warn(f'insufficient_quota key: {key}')
continue
print('Find error message in response: ',
str(response['error']))
except Exception as error:
print(str(error))
max_num_retries += 1
raise RuntimeError('Calling SenseTime failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def _stream_chat(self, messages: List[dict], **gen_params) -> str:
"""Generate completion from a list of templates.
Args:
messages (List[dict]): a list of prompt dictionaries
gen_params: additional generation configuration
Returns:
str: The generated string.
"""
def streaming(raw_response):
for chunk in raw_response.iter_lines():
if chunk:
try:
decoded_chunk = chunk.decode('utf-8')
# print(f"Decoded chunk: {decoded_chunk}")
if decoded_chunk == 'data:[DONE]':
# print("Stream ended")
break
if decoded_chunk.startswith('data:'):
json_str = decoded_chunk[5:]
chunk_data = json.loads(json_str)
if 'data' in chunk_data and 'choices' in chunk_data[
'data']:
choice = chunk_data['data']['choices'][0]
if 'delta' in choice:
content = choice['delta']
yield content
else:
print(f'Unexpected format: {decoded_chunk}')
except json.JSONDecodeError as e:
print(f'JSON parsing error: {e}')
except Exception as e:
print(
f'An error occurred while processing the chunk: {e}'
)
assert isinstance(messages, list)
header, data = self.generate_request_data(
model_type=self.model_type,
messages=messages,
gen_params=gen_params,
json_mode=self.json_mode,
)
max_num_retries = 0
while max_num_retries < self.retry:
if len(self.invalid_keys) == len(self.keys):
raise RuntimeError('All keys have insufficient quota.')
# find the next valid key
while True:
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
if self.keys[self.key_ctr] not in self.invalid_keys:
break
key = self.keys[self.key_ctr]
header['Authorization'] = f'Bearer {key}'
response = dict()
try:
raw_response = requests.post(
self.url,
headers=header,
data=json.dumps(data),
proxies=self.proxies,
)
return streaming(raw_response)
except requests.ConnectionError:
print('Got connection error, retrying...')
continue
except requests.JSONDecodeError:
print('JsonDecode error, got', str(raw_response.content))
continue
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(1)
continue
elif response['error']['code'] == 'insufficient_quota':
self.invalid_keys.add(key)
self.logger.warn(f'insufficient_quota key: {key}')
continue
print('Find error message in response: ',
str(response['error']))
except Exception as error:
print(str(error))
max_num_retries += 1
raise RuntimeError('Calling SenseTime failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def generate_request_data(self,
model_type,
messages,
gen_params,
json_mode=False):
"""
Generates the request data for different model types.
Args:
model_type (str): The type of the model (e.g., 'sense').
messages (list): The list of messages to be sent to the model.
gen_params (dict): The generation parameters.
json_mode (bool): Flag to determine if the response format should be JSON.
Returns:
tuple: A tuple containing the header and the request data.
"""
# Copy generation parameters to avoid modifying the original dictionary
gen_params = gen_params.copy()
# Hold out 100 tokens due to potential errors in token calculation
max_tokens = min(gen_params.pop('max_new_tokens'), 4096)
if max_tokens <= 0:
return '', ''
# Initialize the header
header = {
'content-type': 'application/json',
}
# Common parameters processing
gen_params['max_tokens'] = max_tokens
if 'stop_words' in gen_params:
gen_params['stop'] = gen_params.pop('stop_words')
if 'repetition_penalty' in gen_params:
gen_params['frequency_penalty'] = gen_params.pop(
'repetition_penalty')
# Model-specific processing
data = {}
if model_type.lower().startswith('sense'):
gen_params.pop('skip_special_tokens', None)
gen_params.pop('session_id', None)
data = {
'model': model_type,
'messages': messages,
'n': 1,
**gen_params
}
if json_mode:
data['response_format'] = {'type': 'json_object'}
else:
raise NotImplementedError(
f'Model type {model_type} is not supported')
return header, data
def tokenize(self, prompt: str) -> list:
"""Tokenize the input prompt.
Args:
prompt (str): Input string.
Returns:
list: token ids
"""
import tiktoken
self.tiktoken = tiktoken
enc = self.tiktoken.encoding_for_model('gpt-4o')
return enc.encode(prompt)
|