File size: 13,350 Bytes
e679d69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import json
import warnings
from copy import deepcopy
from typing import Callable, Dict, List, Union

from lagent.actions import ActionExecutor, AsyncActionExecutor, AsyncIPythonInterpreter, IPythonInteractive
from lagent.agents.agent import Agent, AsyncAgent
from lagent.agents.aggregator import InternLMToolAggregator
from lagent.hooks import InternLMActionProcessor
from lagent.llms import BaseLLM
from lagent.memory import Memory
from lagent.prompts.parsers import InterpreterParser, MixedToolParser, PluginParser, ToolStatusCode
from lagent.schema import AgentMessage
from lagent.utils import create_object

API_PREFIX = (
    "This is the subfunction for tool '{tool_name}', you can use this tool. "
    'The description of this function is: \n{description}')

META_CN = ('当开启工具以及代码时,根据需求选择合适的工具进行调用')

INTERPRETER_CN = ('你现在已经能够在一个有状态的 Jupyter 笔记本环境中运行 Python 代码。'
                  '当你向 python 发送含有 Python 代码的消息时,它将在该环境中执行。'
                  '这个工具适用于多种场景,如数据分析或处理(包括数据操作、统计分析、图表绘制),'
                  '复杂的计算问题(解决数学和物理难题),编程示例(理解编程概念或特性),'
                  '文本处理和分析(比如文本解析和自然语言处理),'
                  '机器学习和数据科学(用于展示模型训练和数据可视化),'
                  '以及文件操作和数据导入(处理CSV、JSON等格式的文件)。')

PLUGIN_CN = ('你可以使用如下工具:'
             '\n{prompt}\n'
             '如果你已经获得足够信息,请直接给出答案. 避免不必要的工具调用! '
             '同时注意你可以使用的工具,不要随意捏造!')


def get_plugin_prompt(actions, api_desc_template=API_PREFIX):
    plugin_descriptions = []
    for action in actions if isinstance(actions, list) else [actions]:
        action = create_object(action)
        action_desc = deepcopy(action.description)
        if action.is_toolkit:
            for api in action_desc['api_list']:
                api['name'] = f"{action.name}.{api['name']}"
                api['description'] = api_desc_template.format(
                    tool_name=action.name, description=api['description'])
                api['parameters'] = [
                    param for param in api['parameters']
                    if param['name'] in api['required']
                ]
                plugin_descriptions.append(api)
        else:
            action_desc['description'] = api_desc_template.format(
                tool_name=action.name, description=action_desc['description'])
            action_desc['parameters'] = [
                param for param in action_desc['parameters']
                if param['name'] in action_desc['required']
            ]
            plugin_descriptions.append(action_desc)
    return json.dumps(plugin_descriptions, ensure_ascii=False, indent=4)


class AgentForInternLM(Agent):

    _INTERNAL_AGENT_CLS = Agent

    def __init__(
        self,
        llm: Union[BaseLLM, Dict],
        plugins: Union[dict, List[dict]] = None,
        interpreter: dict = None,
        template: Union[str, dict, List[dict]] = None,
        memory: Dict = dict(type=Memory),
        output_format: Dict = dict(
            type=MixedToolParser,
            template=META_CN,
            parsers=[
                dict(type=PluginParser, template=PLUGIN_CN),
                dict(type=InterpreterParser, template=INTERPRETER_CN),
            ]),
        aggregator: Dict = dict(type=InternLMToolAggregator),
        action_hooks: List = [dict(type=InternLMActionProcessor)],
        finish_condition: Callable[
            [AgentMessage],
            bool] = lambda m: m.formatted['status'] == ToolStatusCode.NO_TOOL,
        max_turn: int = 4,
        **kwargs,
    ):
        agent = dict(
            type=self._INTERNAL_AGENT_CLS,
            llm=llm,
            template=template,
            output_format=output_format,
            memory=memory,
            aggregator=aggregator,
            hooks=kwargs.pop('hooks', None),
        )
        self.agent = create_object(agent)
        self.plugin_executor = plugins and ActionExecutor(
            plugins, hooks=action_hooks)
        self.interpreter_executor = interpreter and ActionExecutor(
            interpreter, hooks=action_hooks)
        if not (self.plugin_executor or self.interpreter_executor):
            warnings.warn(
                'Neither plugin nor interpreter executor is initialized. '
                'An exception will be thrown when the agent call a tool.')
        self.finish_condition = finish_condition
        self.max_turn = max_turn
        super().__init__(**kwargs)

    def forward(self, message: AgentMessage, session_id=0, **kwargs):
        if isinstance(message, str):
            message = AgentMessage(sender='user', content=message)
        for _ in range(self.max_turn):
            message = self.agent(message, session_id=session_id, **kwargs)
            assert isinstance(message.formatted, dict)
            if self.finish_condition(message):
                return message
            if message.formatted['tool_type']:
                tool_type = message.formatted["tool_type"]
                executor = getattr(self, f'{tool_type}_executor', None)
                if not executor:
                    raise RuntimeError(f'No available {tool_type} executor')
                message = executor(message, session_id=session_id)
        return message

    def get_steps(self, session_id=0):
        steps, tool_type = [], None
        for msg in self.agent.memory.get_memory(session_id):
            if msg.sender == self.agent.name:
                steps.append(
                    dict(role='thought', content=msg.formatted['thought']))
                if msg.formatted['tool_type']:
                    tool_type = msg.formatted['tool_type']
                    steps.append(
                        dict(
                            role='tool',
                            content=msg.formatted['action'],
                            name=tool_type))
            elif msg.sender != 'user':
                feedback = dict(role='environment', content=msg.content)
                if tool_type:
                    feedback['name'] = tool_type
                steps.append(feedback)
        return steps


class MathCoder(AgentForInternLM):

    def __init__(
        self,
        llm: Union[BaseLLM, Dict],
        interpreter: dict = dict(
            type=IPythonInteractive, timeout=20, max_out_len=8192),
        template: Union[str, dict, List[dict]] = None,
        memory: Dict = dict(type=Memory),
        output_format: Dict = dict(
            type=InterpreterParser,
            template=
            ('Integrate step-by-step reasoning and Python code to solve math problems '
             'using the following guidelines:\n'
             '- Analyze the question and write jupyter code to solve the problem;\n'
             r"- Present the final result in LaTeX using a '\boxed{{}}' without any "
             'units. \n')),
        aggregator: Dict = dict(type=InternLMToolAggregator),
        action_hooks: List = [dict(type=InternLMActionProcessor)],
        finish_condition: Callable[
            [AgentMessage],
            bool] = lambda m: m.formatted['status'] == ToolStatusCode.NO_TOOL,
        max_turn: int = 6,
        **kwargs,
    ):
        kwargs.pop('plugins', None)
        super().__init__(
            llm=llm,
            interpreter=interpreter,
            template=template,
            memory=memory,
            output_format=output_format,
            aggregator=aggregator,
            action_hooks=action_hooks,
            finish_condition=finish_condition,
            max_turn=max_turn,
            **kwargs)


class AsyncAgentForInternLM(AsyncAgent):

    _INTERNAL_AGENT_CLS = AsyncAgent

    def __init__(
        self,
        llm: Union[BaseLLM, Dict],
        plugins: Union[dict, List[dict]] = None,
        interpreter: dict = None,
        template: Union[str, dict, List[dict]] = None,
        memory: Dict = dict(type=Memory),
        output_format: Dict = dict(
            type=MixedToolParser,
            template=META_CN,
            parsers=[
                dict(type=PluginParser, template=PLUGIN_CN),
                dict(type=InterpreterParser, template=INTERPRETER_CN),
            ]),
        aggregator: Dict = dict(type=InternLMToolAggregator),
        action_hooks: List = [dict(type=InternLMActionProcessor)],
        finish_condition: Callable[
            [AgentMessage],
            bool] = lambda m: m.formatted['status'] == ToolStatusCode.NO_TOOL,
        max_turn: int = 4,
        **kwargs,
    ):
        agent = dict(
            type=self._INTERNAL_AGENT_CLS,
            llm=llm,
            template=template,
            output_format=output_format,
            memory=memory,
            aggregator=aggregator,
            hooks=kwargs.pop('hooks', None),
        )
        self.agent = create_object(agent)
        self.plugin_executor = plugins and AsyncActionExecutor(
            plugins, hooks=action_hooks)
        self.interpreter_executor = interpreter and AsyncActionExecutor(
            interpreter, hooks=action_hooks)
        if not (self.plugin_executor or self.interpreter_executor):
            warnings.warn(
                'Neither plugin nor interpreter executor is initialized. '
                'An exception will be thrown when the agent call a tool.')
        self.finish_condition = finish_condition
        self.max_turn = max_turn
        super().__init__(**kwargs)

    async def forward(self, message: AgentMessage, session_id=0, **kwargs):
        if isinstance(message, str):
            message = AgentMessage(sender='user', content=message)
        for _ in range(self.max_turn):
            message = await self.agent(
                message, session_id=session_id, **kwargs)
            assert isinstance(message.formatted, dict)
            if self.finish_condition(message):
                return message
            if message.formatted['tool_type']:
                tool_type = message.formatted["tool_type"]
                executor = getattr(self, f'{tool_type}_executor', None)
                if not executor:
                    raise RuntimeError(f'No available {tool_type} executor')
                message = await executor(message, session_id=session_id)
        return message

    def get_steps(self, session_id=0):
        steps, tool_type = [], None
        for msg in self.agent.memory.get_memory(session_id):
            if msg.sender == self.agent.name:
                steps.append(
                    dict(role='thought', content=msg.formatted['thought']))
                if msg.formatted['tool_type']:
                    tool_type = msg.formatted['tool_type']
                    steps.append(
                        dict(
                            role='tool',
                            content=msg.formatted['action'],
                            name=tool_type))
            elif msg.sender != 'user':
                feedback = dict(role='environment', content=msg.content)
                if tool_type:
                    feedback['name'] = tool_type
                steps.append(feedback)
        return steps


class AsyncMathCoder(AsyncAgentForInternLM):

    def __init__(
        self,
        llm: Union[BaseLLM, Dict],
        interpreter: dict = dict(type=AsyncIPythonInterpreter),
        template: Union[str, dict, List[dict]] = None,
        memory: Dict = dict(type=Memory),
        output_format: Dict = dict(
            type=InterpreterParser,
            template=
            ('Integrate step-by-step reasoning and Python code to solve math problems '
             'using the following guidelines:\n'
             '- Analyze the question and write jupyter code to solve the problem;\n'
             r"- Present the final result in LaTeX using a '\boxed{{}}' without any "
             'units. \n')),
        aggregator: Dict = dict(type=InternLMToolAggregator),
        action_hooks: List = [dict(type=InternLMActionProcessor)],
        finish_condition: Callable[
            [AgentMessage],
            bool] = lambda m: m.formatted['status'] == ToolStatusCode.NO_TOOL,
        max_turn: int = 6,
        **kwargs,
    ):
        kwargs.pop('plugins', None)
        super().__init__(
            llm=llm,
            interpreter=interpreter,
            template=template,
            memory=memory,
            output_format=output_format,
            aggregator=aggregator,
            action_hooks=action_hooks,
            finish_condition=finish_condition,
            max_turn=max_turn,
            **kwargs)

    async def forward(self, message: AgentMessage, session_id=0, **kwargs):
        try:
            return await super().forward(message, session_id, **kwargs)
        finally:
            interpreter = next(
                iter(self.interpreter_executor.actions.values()))
            if interpreter.name == 'AsyncIPythonInterpreter':
                await interpreter.close_session(session_id)