Spaces:
Sleeping
Sleeping
File size: 32,416 Bytes
e679d69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 |
import asyncio
import copy
import logging
from dataclasses import asdict
from typing import List, Optional, Union
import aiohttp
from lagent.llms.base_llm import AsyncLLMMixin, BaseLLM
from lagent.schema import ModelStatusCode
from lagent.utils.util import filter_suffix
class TritonClient(BaseLLM):
"""TritonClient is a wrapper of TritonClient for LLM.
Args:
tritonserver_addr (str): the address in format "ip:port" of
triton inference server
model_name (str): the name of the model
session_len (int): the context size
max_tokens (int): the expected generated token numbers
"""
def __init__(self,
tritonserver_addr: str,
model_name: str,
session_len: int = 32768,
log_level: str = 'WARNING',
**kwargs):
super().__init__(path=None, **kwargs)
try:
from lmdeploy.serve.turbomind.chatbot import Chatbot, StatusCode
except Exception as e:
logging.error(f'{e}')
raise RuntimeError('DO NOT use turbomind.chatbot since it has '
'been removed by lmdeploy since v0.5.2')
self.state_map = {
StatusCode.TRITON_STREAM_END: ModelStatusCode.END,
StatusCode.TRITON_SERVER_ERR: ModelStatusCode.SERVER_ERR,
StatusCode.TRITON_SESSION_CLOSED: ModelStatusCode.SESSION_CLOSED,
StatusCode.TRITON_STREAM_ING: ModelStatusCode.STREAM_ING,
StatusCode.TRITON_SESSION_OUT_OF_LIMIT:
ModelStatusCode.SESSION_OUT_OF_LIMIT,
StatusCode.TRITON_SESSION_INVALID_ARG:
ModelStatusCode.SESSION_INVALID_ARG,
StatusCode.TRITON_SESSION_READY: ModelStatusCode.SESSION_READY
}
self.chatbot = Chatbot(
tritonserver_addr=tritonserver_addr,
model_name=model_name,
session_len=session_len,
log_level=log_level,
**kwargs)
def generate(self,
inputs: Union[str, List[str]],
session_id: int = 2967,
request_id: str = '',
sequence_start: bool = True,
sequence_end: bool = True,
skip_special_tokens: bool = False,
**kwargs):
"""Start a new round conversation of a session. Return the chat
completions in non-stream mode.
Args:
inputs (str, List[str]): user's prompt(s) in this round
session_id (int): the identical id of a session
request_id (str): the identical id of this round conversation
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
(a list of/batched) text/chat completion
"""
from lmdeploy.serve.turbomind.chatbot import Session, get_logger
if isinstance(inputs, str):
inputs = [inputs]
prompt = inputs
assert isinstance(session_id, int), \
f'INT session id is required, but got {type(session_id)}'
self.chatbot.cfg = self._update_gen_params(**kwargs)
max_new_tokens = self.chatbot.cfg.max_new_tokens
logger = get_logger('service.ft', log_level=self.chatbot.log_level)
logger.info(f'session {session_id}, request_id {request_id}, '
f'max_out_len {max_new_tokens}')
if self.chatbot._session is None:
sequence_start = True
self.chatbot._session = Session(session_id=session_id)
elif self.chatbot._session.status == 0:
logger.error(f'session {session_id} has been ended. Please set '
f'`sequence_start` be True if you want to restart it')
return ''
self.chatbot._session.status = 1
self.chatbot._session.request_id = request_id
self.chatbot._session.response = ''
status, res, _ = None, '', 0
for status, res, _ in self.chatbot._stream_infer(
self.chatbot._session,
prompt,
max_new_tokens,
sequence_start,
sequence_end,
skip_special_tokens=skip_special_tokens):
status = self.state_map.get(status)
if status < ModelStatusCode.END:
return ''
elif status == ModelStatusCode.END:
self.chatbot._session.histories = (
self.chatbot._session.histories +
self.chatbot._session.prompt +
self.chatbot._session.response)
# remove stop_words
res = filter_suffix(res, self.gen_params.get('stop_words'))
return res
def stream_chat(self,
inputs: List[dict],
session_id: int = 2967,
request_id: str = '',
sequence_start: bool = True,
sequence_end: bool = True,
skip_special_tokens: bool = False,
**kwargs):
"""Start a new round conversation of a session. Return the chat
completions in stream mode.
Args:
session_id (int): the identical id of a session
inputs (List[dict]): user's inputs in this round conversation
request_id (str): the identical id of this round conversation
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
tuple(Status, str, int): status, text/chat completion,
generated token number
"""
from lmdeploy.serve.turbomind.chatbot import Session, get_logger
assert isinstance(session_id, int), \
f'INT session id is required, but got {type(session_id)}'
self.chatbot.cfg = self._update_gen_params(**kwargs)
max_new_tokens = self.chatbot.cfg.max_new_tokens
logger = get_logger('service.ft', log_level=self.chatbot.log_level)
logger.info(f'session {session_id}, request_id {request_id}, '
f'max_out_len {max_new_tokens}')
if self.chatbot._session is None:
sequence_start = True
self.chatbot._session = Session(session_id=session_id)
elif self.chatbot._session.status == 0:
logger.error(f'session {session_id} has been ended. Please set '
f'`sequence_start` be True if you want to restart it')
return ModelStatusCode.SESSION_CLOSED, '', 0
self.chatbot._session.status = 1
self.chatbot._session.request_id = request_id
self.chatbot._session.response = ''
prompt = self.template_parser(inputs)
status, res, _ = None, '', 0
for status, res, _ in self.chatbot._stream_infer(
self.chatbot._session,
prompt,
max_new_tokens,
sequence_start,
sequence_end,
skip_special_tokens=skip_special_tokens):
status = self.state_map.get(status)
# The stop symbol also appears in the output of the last STREAM_ING state.
res = filter_suffix(res, self.gen_params.get('stop_words'))
if status < ModelStatusCode.END:
return status, res, _
elif status == ModelStatusCode.END: # remove stop_words
self.chatbot._session.histories = (
self.chatbot._session.histories +
self.chatbot._session.prompt +
self.chatbot._session.response)
yield status, res, _
break
else:
yield status, res, _
def _update_gen_params(self, **kwargs):
import mmengine
new_gen_params = self.update_gen_params(**kwargs)
self.gen_params['stop_words'] = new_gen_params.pop('stop_words')
stop_words = self.chatbot._stop_words(
self.gen_params.get('stop_words'))
cfg = mmengine.Config(
dict(
session_len=self.chatbot.model.session_len,
stop_words=stop_words,
bad_words=self.chatbot.cfg.bad_words,
**new_gen_params))
return cfg
class LMDeployPipeline(BaseLLM):
"""
Args:
path (str): The path to the model.
It could be one of the following options:
- i) A local directory path of a turbomind model which is
converted by `lmdeploy convert` command or download
from ii) and iii).
- ii) The model_id of a lmdeploy-quantized model hosted
inside a model repo on huggingface.co, such as
"InternLM/internlm-chat-20b-4bit",
"lmdeploy/llama2-chat-70b-4bit", etc.
- iii) The model_id of a model hosted inside a model repo
on huggingface.co, such as "internlm/internlm-chat-7b",
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
and so on.
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
tp (int): tensor parallel
pipeline_cfg (dict): config of pipeline
"""
def __init__(self,
path: str,
model_name: Optional[str] = None,
tp: int = 1,
pipeline_cfg=dict(),
**kwargs):
import lmdeploy
from lmdeploy import ChatTemplateConfig, TurbomindEngineConfig, pipeline, version_info
self.str_version = lmdeploy.__version__
self.version = version_info
self.do_sample = kwargs.pop('do_sample', None)
if self.do_sample is not None and self.version < (0, 6, 0):
raise RuntimeError(
'`do_sample` parameter is not supported by lmdeploy until '
f'v0.6.0, but currently using lmdeloy {self.str_version}')
super().__init__(path=path, **kwargs)
backend_config = copy.deepcopy(pipeline_cfg)
backend_config.update(tp=tp)
backend_config = {
k: v
for k, v in backend_config.items()
if hasattr(TurbomindEngineConfig, k)
}
backend_config = TurbomindEngineConfig(**backend_config)
chat_template_config = ChatTemplateConfig(
model_name=model_name) if model_name else None
self.model = pipeline(
model_path=self.path,
backend_config=backend_config,
chat_template_config=chat_template_config,
log_level='WARNING')
def generate(self,
inputs: Union[str, List[str]],
do_preprocess: bool = None,
skip_special_tokens: bool = False,
return_dict: bool = False,
**kwargs):
"""Return the chat completions in non-stream mode.
Args:
inputs (Union[str, List[str]]): input texts to be completed.
do_preprocess (bool): whether pre-process the messages. Default to
True, which means chat_template will be applied.
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
(a list of/batched) text/chat completion
"""
from lmdeploy.messages import GenerationConfig
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
prompt = inputs
do_sample = kwargs.pop('do_sample', None)
gen_params = self.update_gen_params(**kwargs)
if do_sample is None:
do_sample = self.do_sample
if do_sample is not None and self.version < (0, 6, 0):
raise RuntimeError(
'`do_sample` parameter is not supported by lmdeploy until '
f'v0.6.0, but currently using lmdeloy {self.str_version}')
if self.version >= (0, 6, 0):
if do_sample is None:
do_sample = gen_params['top_k'] > 1 or gen_params[
'temperature'] > 0
gen_params.update(do_sample=do_sample)
gen_config = GenerationConfig(
skip_special_tokens=skip_special_tokens, **gen_params)
response = self.model.batch_infer(
prompt, gen_config=gen_config, do_preprocess=do_preprocess)
texts = [resp.text for resp in response]
# remove stop_words
texts = filter_suffix(texts, self.gen_params.get('stop_words'))
for resp, text in zip(response, texts):
resp.text = text
if batched:
return [asdict(resp)
for resp in response] if return_dict else texts
return asdict(response[0]) if return_dict else texts[0]
class LMDeployServer(BaseLLM):
"""
Args:
path (str): The path to the model.
It could be one of the following options:
- i) A local directory path of a turbomind model which is
converted by `lmdeploy convert` command or download from
ii) and iii).
- ii) The model_id of a lmdeploy-quantized model hosted
inside a model repo on huggingface.co, such as
"InternLM/internlm-chat-20b-4bit",
"lmdeploy/llama2-chat-70b-4bit", etc.
- iii) The model_id of a model hosted inside a model repo
on huggingface.co, such as "internlm/internlm-chat-7b",
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
and so on.
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
server_name (str): host ip for serving
server_port (int): server port
tp (int): tensor parallel
log_level (str): set log level whose value among
[CRITICAL, ERROR, WARNING, INFO, DEBUG]
"""
def __init__(self,
path: str,
model_name: Optional[str] = None,
server_name: str = '0.0.0.0',
server_port: int = 23333,
tp: int = 1,
log_level: str = 'WARNING',
serve_cfg=dict(),
**kwargs):
super().__init__(path=path, **kwargs)
self.model_name = model_name
# TODO get_logger issue in multi processing
import lmdeploy
self.client = lmdeploy.serve(
model_path=self.path,
model_name=model_name,
server_name=server_name,
server_port=server_port,
tp=tp,
log_level=log_level,
**serve_cfg)
def generate(self,
inputs: Union[str, List[str]],
session_id: int = 2967,
sequence_start: bool = True,
sequence_end: bool = True,
ignore_eos: bool = False,
skip_special_tokens: Optional[bool] = False,
timeout: int = 30,
**kwargs) -> List[str]:
"""Start a new round conversation of a session. Return the chat
completions in non-stream mode.
Args:
inputs (str, List[str]): user's prompt(s) in this round
session_id (int): the identical id of a session
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
ignore_eos (bool): indicator for ignoring eos
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
timeout (int): max time to wait for response
Returns:
(a list of/batched) text/chat completion
"""
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
gen_params.update(max_tokens=max_new_tokens)
resp = [''] * len(inputs)
for text in self.client.completions_v1(
self.model_name,
inputs,
session_id=session_id,
sequence_start=sequence_start,
sequence_end=sequence_end,
stream=False,
ignore_eos=ignore_eos,
skip_special_tokens=skip_special_tokens,
timeout=timeout,
**gen_params):
resp = [
resp[i] + item['text']
for i, item in enumerate(text['choices'])
]
# remove stop_words
resp = filter_suffix(resp, self.gen_params.get('stop_words'))
if not batched:
return resp[0]
return resp
def stream_chat(self,
inputs: List[dict],
session_id=0,
sequence_start: bool = True,
sequence_end: bool = True,
stream: bool = True,
ignore_eos: bool = False,
skip_special_tokens: Optional[bool] = False,
timeout: int = 30,
**kwargs):
"""Start a new round conversation of a session. Return the chat
completions in stream mode.
Args:
session_id (int): the identical id of a session
inputs (List[dict]): user's inputs in this round conversation
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
stream (bool): return in a streaming format if enabled
ignore_eos (bool): indicator for ignoring eos
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
timeout (int): max time to wait for response
Returns:
tuple(Status, str, int): status, text/chat completion,
generated token number
"""
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
gen_params.update(max_tokens=max_new_tokens)
prompt = self.template_parser(inputs)
resp = ''
finished = False
stop_words = self.gen_params.get('stop_words')
for text in self.client.completions_v1(
self.model_name,
prompt,
session_id=session_id,
sequence_start=sequence_start,
sequence_end=sequence_end,
stream=stream,
ignore_eos=ignore_eos,
skip_special_tokens=skip_special_tokens,
timeout=timeout,
**gen_params):
resp += text['choices'][0]['text']
if not resp:
continue
# remove stop_words
for sw in stop_words:
if sw in resp:
resp = filter_suffix(resp, stop_words)
finished = True
break
yield ModelStatusCode.STREAM_ING, resp, None
if finished:
break
yield ModelStatusCode.END, resp, None
class LMDeployClient(LMDeployServer):
"""
Args:
url (str): communicating address 'http://<ip>:<port>' of
api_server
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
"""
def __init__(self, url: str, model_name: str, **kwargs):
BaseLLM.__init__(self, path=url, **kwargs)
from lmdeploy.serve.openai.api_client import APIClient
self.client = APIClient(url)
self.model_name = model_name
class AsyncLMDeployPipeline(AsyncLLMMixin, LMDeployPipeline):
"""
Args:
path (str): The path to the model.
It could be one of the following options:
- i) A local directory path of a turbomind model which is
converted by `lmdeploy convert` command or download
from ii) and iii).
- ii) The model_id of a lmdeploy-quantized model hosted
inside a model repo on huggingface.co, such as
"InternLM/internlm-chat-20b-4bit",
"lmdeploy/llama2-chat-70b-4bit", etc.
- iii) The model_id of a model hosted inside a model repo
on huggingface.co, such as "internlm/internlm-chat-7b",
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
and so on.
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
tp (int): tensor parallel
pipeline_cfg (dict): config of pipeline
"""
async def generate(self,
inputs: Union[str, List[str]],
session_ids: Union[int, List[int]] = None,
do_preprocess: bool = None,
skip_special_tokens: bool = False,
return_dict: bool = False,
**kwargs):
"""Return the chat completions in non-stream mode.
Args:
inputs (Union[str, List[str]]): input texts to be completed.
do_preprocess (bool): whether pre-process the messages. Default to
True, which means chat_template will be applied.
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
(a list of/batched) text/chat completion
"""
from lmdeploy.messages import GenerationConfig, Response
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
if session_ids is None:
session_ids = list(range(len(inputs)))
elif isinstance(session_ids, (int, str)):
session_ids = [session_ids]
assert len(inputs) == len(session_ids)
prompt = inputs
gen_params = self.update_gen_params(**kwargs)
gen_config = GenerationConfig(
skip_special_tokens=skip_special_tokens, **gen_params)
async def _inner_generate(uid, text):
resp = Response('', 0, 0, uid)
async for out in self.model.generate(
text,
uid,
gen_config,
stream_response=True,
sequence_start=True,
sequence_end=True,
do_preprocess=do_preprocess,
**kwargs):
resp.text += out.response
resp.generate_token_len = out.generate_token_len
resp.input_token_len = out.input_token_len
resp.finish_reason = out.finish_reason
if out.token_ids:
resp.token_ids.extend(out.token_ids)
if out.logprobs:
if resp.logprobs is None:
resp.logprobs = []
resp.logprobs.extend(out.logprobs)
return resp
response = await asyncio.gather(*[
_inner_generate(sid, inp) for sid, inp in zip(session_ids, prompt)
])
texts = [resp.text for resp in response]
# remove stop_words
texts = filter_suffix(texts, self.gen_params.get('stop_words'))
for resp, text in zip(response, texts):
resp.text = text
if batched:
return [asdict(resp)
for resp in response] if return_dict else texts
return asdict(response[0]) if return_dict else texts[0]
class AsyncLMDeployServer(AsyncLLMMixin, LMDeployServer):
"""
Args:
path (str): The path to the model.
It could be one of the following options:
- i) A local directory path of a turbomind model which is
converted by `lmdeploy convert` command or download from
ii) and iii).
- ii) The model_id of a lmdeploy-quantized model hosted
inside a model repo on huggingface.co, such as
"InternLM/internlm-chat-20b-4bit",
"lmdeploy/llama2-chat-70b-4bit", etc.
- iii) The model_id of a model hosted inside a model repo
on huggingface.co, such as "internlm/internlm-chat-7b",
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
and so on.
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
server_name (str): host ip for serving
server_port (int): server port
tp (int): tensor parallel
log_level (str): set log level whose value among
[CRITICAL, ERROR, WARNING, INFO, DEBUG]
"""
async def generate(
self,
inputs: Union[str, List[str]],
session_ids: Union[int, List[int]] = None,
sequence_start: bool = True,
sequence_end: bool = True,
ignore_eos: bool = False,
skip_special_tokens: Optional[bool] = False,
timeout: int = 30,
**kwargs,
):
"""Start a new round conversation of a session. Return the chat
completions in non-stream mode.
Args:
inputs (str, List[str]): user's prompt(s) in this round
session_ids (int, List[int]): session id(s)
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
ignore_eos (bool): indicator for ignoring eos
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
timeout (int): max time to wait for response
Returns:
(a list of/batched) text/chat completion
"""
from lmdeploy.serve.openai.api_client import json_loads
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
gen_params.update(max_tokens=max_new_tokens)
responses = [''] * len(inputs)
pload = dict(
model=self.model_name,
prompt=inputs,
sequence_start=sequence_start,
sequence_end=sequence_end,
stream=False,
ignore_eos=ignore_eos,
skip_special_tokens=skip_special_tokens,
timeout=timeout,
**gen_params)
async with aiohttp.ClientSession(
timeout=aiohttp.ClientTimeout(3 * 3600)) as session:
async with session.post(
self.client.completions_v1_url,
headers=self.client.headers,
json=pload) as resp:
async for chunk in resp.content:
if chunk:
decoded = chunk.decode('utf-8')
output = json_loads(decoded)
responses = [
response + item['text'] for response, item in zip(
responses, output['choices'])
]
# remove stop_words
responses = filter_suffix(responses, self.gen_params.get('stop_words'))
if not batched:
return responses[0]
return responses
async def stream_chat(
self,
inputs: List[dict],
session_id: int = None,
sequence_start: bool = True,
sequence_end: bool = True,
stream: bool = True,
ignore_eos: bool = False,
skip_special_tokens: Optional[bool] = False,
timeout: int = 30,
**kwargs,
):
"""Start a new round conversation of a session. Return the chat
completions in stream mode.
Args:
inputs (List[dict]): user's inputs in this round conversation
session_id (int): session id
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
stream (bool): return in a streaming format if enabled
ignore_eos (bool): indicator for ignoring eos
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
timeout (int): max time to wait for response
Returns:
tuple(Status, str, int): status, text/chat completion,
generated token number
"""
from lmdeploy.serve.openai.api_client import json_loads
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
gen_params.update(max_tokens=max_new_tokens)
prompt = self.template_parser(inputs)
response = ''
finished = False
stop_words = self.gen_params.get('stop_words')
pload = dict(
model=self.model_name,
prompt=prompt,
sequence_start=sequence_start,
sequence_end=sequence_end,
stream=stream,
ignore_eos=ignore_eos,
skip_special_tokens=skip_special_tokens,
timeout=timeout,
**gen_params)
async with aiohttp.ClientSession(
timeout=aiohttp.ClientTimeout(3 * 3600)) as session:
async with session.post(
self.client.completions_v1_url,
headers=self.client.headers,
json=pload) as resp:
async for chunk in resp.content:
if chunk:
decoded = chunk.decode('utf-8')
if not decoded.strip() or decoded.rstrip(
) == 'data: [DONE]':
continue
if decoded[:6] == 'data: ':
decoded = decoded[6:]
output = json_loads(decoded)
response += output['choices'][0]['text']
if not response:
continue
# remove stop_words
for sw in stop_words:
if sw in response:
response = filter_suffix(response, stop_words)
finished = True
break
yield ModelStatusCode.STREAM_ING, response, None
if finished:
break
yield ModelStatusCode.END, response, None
class AsyncLMDeployClient(AsyncLMDeployServer):
"""
Args:
url (str): communicating address 'http://<ip>:<port>' of
api_server
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
"""
def __init__(self, url: str, model_name: str, **kwargs):
BaseLLM.__init__(self, path=url, **kwargs)
from lmdeploy.serve.openai.api_client import APIClient
self.client = APIClient(url)
self.model_name = model_name
|