Lagent / lagent /llms /lmdeploy_wrapper.py
Superkingjcj's picture
Upload 111 files
e679d69 verified
raw
history blame
32.4 kB
import asyncio
import copy
import logging
from dataclasses import asdict
from typing import List, Optional, Union
import aiohttp
from lagent.llms.base_llm import AsyncLLMMixin, BaseLLM
from lagent.schema import ModelStatusCode
from lagent.utils.util import filter_suffix
class TritonClient(BaseLLM):
"""TritonClient is a wrapper of TritonClient for LLM.
Args:
tritonserver_addr (str): the address in format "ip:port" of
triton inference server
model_name (str): the name of the model
session_len (int): the context size
max_tokens (int): the expected generated token numbers
"""
def __init__(self,
tritonserver_addr: str,
model_name: str,
session_len: int = 32768,
log_level: str = 'WARNING',
**kwargs):
super().__init__(path=None, **kwargs)
try:
from lmdeploy.serve.turbomind.chatbot import Chatbot, StatusCode
except Exception as e:
logging.error(f'{e}')
raise RuntimeError('DO NOT use turbomind.chatbot since it has '
'been removed by lmdeploy since v0.5.2')
self.state_map = {
StatusCode.TRITON_STREAM_END: ModelStatusCode.END,
StatusCode.TRITON_SERVER_ERR: ModelStatusCode.SERVER_ERR,
StatusCode.TRITON_SESSION_CLOSED: ModelStatusCode.SESSION_CLOSED,
StatusCode.TRITON_STREAM_ING: ModelStatusCode.STREAM_ING,
StatusCode.TRITON_SESSION_OUT_OF_LIMIT:
ModelStatusCode.SESSION_OUT_OF_LIMIT,
StatusCode.TRITON_SESSION_INVALID_ARG:
ModelStatusCode.SESSION_INVALID_ARG,
StatusCode.TRITON_SESSION_READY: ModelStatusCode.SESSION_READY
}
self.chatbot = Chatbot(
tritonserver_addr=tritonserver_addr,
model_name=model_name,
session_len=session_len,
log_level=log_level,
**kwargs)
def generate(self,
inputs: Union[str, List[str]],
session_id: int = 2967,
request_id: str = '',
sequence_start: bool = True,
sequence_end: bool = True,
skip_special_tokens: bool = False,
**kwargs):
"""Start a new round conversation of a session. Return the chat
completions in non-stream mode.
Args:
inputs (str, List[str]): user's prompt(s) in this round
session_id (int): the identical id of a session
request_id (str): the identical id of this round conversation
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
(a list of/batched) text/chat completion
"""
from lmdeploy.serve.turbomind.chatbot import Session, get_logger
if isinstance(inputs, str):
inputs = [inputs]
prompt = inputs
assert isinstance(session_id, int), \
f'INT session id is required, but got {type(session_id)}'
self.chatbot.cfg = self._update_gen_params(**kwargs)
max_new_tokens = self.chatbot.cfg.max_new_tokens
logger = get_logger('service.ft', log_level=self.chatbot.log_level)
logger.info(f'session {session_id}, request_id {request_id}, '
f'max_out_len {max_new_tokens}')
if self.chatbot._session is None:
sequence_start = True
self.chatbot._session = Session(session_id=session_id)
elif self.chatbot._session.status == 0:
logger.error(f'session {session_id} has been ended. Please set '
f'`sequence_start` be True if you want to restart it')
return ''
self.chatbot._session.status = 1
self.chatbot._session.request_id = request_id
self.chatbot._session.response = ''
status, res, _ = None, '', 0
for status, res, _ in self.chatbot._stream_infer(
self.chatbot._session,
prompt,
max_new_tokens,
sequence_start,
sequence_end,
skip_special_tokens=skip_special_tokens):
status = self.state_map.get(status)
if status < ModelStatusCode.END:
return ''
elif status == ModelStatusCode.END:
self.chatbot._session.histories = (
self.chatbot._session.histories +
self.chatbot._session.prompt +
self.chatbot._session.response)
# remove stop_words
res = filter_suffix(res, self.gen_params.get('stop_words'))
return res
def stream_chat(self,
inputs: List[dict],
session_id: int = 2967,
request_id: str = '',
sequence_start: bool = True,
sequence_end: bool = True,
skip_special_tokens: bool = False,
**kwargs):
"""Start a new round conversation of a session. Return the chat
completions in stream mode.
Args:
session_id (int): the identical id of a session
inputs (List[dict]): user's inputs in this round conversation
request_id (str): the identical id of this round conversation
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
tuple(Status, str, int): status, text/chat completion,
generated token number
"""
from lmdeploy.serve.turbomind.chatbot import Session, get_logger
assert isinstance(session_id, int), \
f'INT session id is required, but got {type(session_id)}'
self.chatbot.cfg = self._update_gen_params(**kwargs)
max_new_tokens = self.chatbot.cfg.max_new_tokens
logger = get_logger('service.ft', log_level=self.chatbot.log_level)
logger.info(f'session {session_id}, request_id {request_id}, '
f'max_out_len {max_new_tokens}')
if self.chatbot._session is None:
sequence_start = True
self.chatbot._session = Session(session_id=session_id)
elif self.chatbot._session.status == 0:
logger.error(f'session {session_id} has been ended. Please set '
f'`sequence_start` be True if you want to restart it')
return ModelStatusCode.SESSION_CLOSED, '', 0
self.chatbot._session.status = 1
self.chatbot._session.request_id = request_id
self.chatbot._session.response = ''
prompt = self.template_parser(inputs)
status, res, _ = None, '', 0
for status, res, _ in self.chatbot._stream_infer(
self.chatbot._session,
prompt,
max_new_tokens,
sequence_start,
sequence_end,
skip_special_tokens=skip_special_tokens):
status = self.state_map.get(status)
# The stop symbol also appears in the output of the last STREAM_ING state.
res = filter_suffix(res, self.gen_params.get('stop_words'))
if status < ModelStatusCode.END:
return status, res, _
elif status == ModelStatusCode.END: # remove stop_words
self.chatbot._session.histories = (
self.chatbot._session.histories +
self.chatbot._session.prompt +
self.chatbot._session.response)
yield status, res, _
break
else:
yield status, res, _
def _update_gen_params(self, **kwargs):
import mmengine
new_gen_params = self.update_gen_params(**kwargs)
self.gen_params['stop_words'] = new_gen_params.pop('stop_words')
stop_words = self.chatbot._stop_words(
self.gen_params.get('stop_words'))
cfg = mmengine.Config(
dict(
session_len=self.chatbot.model.session_len,
stop_words=stop_words,
bad_words=self.chatbot.cfg.bad_words,
**new_gen_params))
return cfg
class LMDeployPipeline(BaseLLM):
"""
Args:
path (str): The path to the model.
It could be one of the following options:
- i) A local directory path of a turbomind model which is
converted by `lmdeploy convert` command or download
from ii) and iii).
- ii) The model_id of a lmdeploy-quantized model hosted
inside a model repo on huggingface.co, such as
"InternLM/internlm-chat-20b-4bit",
"lmdeploy/llama2-chat-70b-4bit", etc.
- iii) The model_id of a model hosted inside a model repo
on huggingface.co, such as "internlm/internlm-chat-7b",
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
and so on.
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
tp (int): tensor parallel
pipeline_cfg (dict): config of pipeline
"""
def __init__(self,
path: str,
model_name: Optional[str] = None,
tp: int = 1,
pipeline_cfg=dict(),
**kwargs):
import lmdeploy
from lmdeploy import ChatTemplateConfig, TurbomindEngineConfig, pipeline, version_info
self.str_version = lmdeploy.__version__
self.version = version_info
self.do_sample = kwargs.pop('do_sample', None)
if self.do_sample is not None and self.version < (0, 6, 0):
raise RuntimeError(
'`do_sample` parameter is not supported by lmdeploy until '
f'v0.6.0, but currently using lmdeloy {self.str_version}')
super().__init__(path=path, **kwargs)
backend_config = copy.deepcopy(pipeline_cfg)
backend_config.update(tp=tp)
backend_config = {
k: v
for k, v in backend_config.items()
if hasattr(TurbomindEngineConfig, k)
}
backend_config = TurbomindEngineConfig(**backend_config)
chat_template_config = ChatTemplateConfig(
model_name=model_name) if model_name else None
self.model = pipeline(
model_path=self.path,
backend_config=backend_config,
chat_template_config=chat_template_config,
log_level='WARNING')
def generate(self,
inputs: Union[str, List[str]],
do_preprocess: bool = None,
skip_special_tokens: bool = False,
return_dict: bool = False,
**kwargs):
"""Return the chat completions in non-stream mode.
Args:
inputs (Union[str, List[str]]): input texts to be completed.
do_preprocess (bool): whether pre-process the messages. Default to
True, which means chat_template will be applied.
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
(a list of/batched) text/chat completion
"""
from lmdeploy.messages import GenerationConfig
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
prompt = inputs
do_sample = kwargs.pop('do_sample', None)
gen_params = self.update_gen_params(**kwargs)
if do_sample is None:
do_sample = self.do_sample
if do_sample is not None and self.version < (0, 6, 0):
raise RuntimeError(
'`do_sample` parameter is not supported by lmdeploy until '
f'v0.6.0, but currently using lmdeloy {self.str_version}')
if self.version >= (0, 6, 0):
if do_sample is None:
do_sample = gen_params['top_k'] > 1 or gen_params[
'temperature'] > 0
gen_params.update(do_sample=do_sample)
gen_config = GenerationConfig(
skip_special_tokens=skip_special_tokens, **gen_params)
response = self.model.batch_infer(
prompt, gen_config=gen_config, do_preprocess=do_preprocess)
texts = [resp.text for resp in response]
# remove stop_words
texts = filter_suffix(texts, self.gen_params.get('stop_words'))
for resp, text in zip(response, texts):
resp.text = text
if batched:
return [asdict(resp)
for resp in response] if return_dict else texts
return asdict(response[0]) if return_dict else texts[0]
class LMDeployServer(BaseLLM):
"""
Args:
path (str): The path to the model.
It could be one of the following options:
- i) A local directory path of a turbomind model which is
converted by `lmdeploy convert` command or download from
ii) and iii).
- ii) The model_id of a lmdeploy-quantized model hosted
inside a model repo on huggingface.co, such as
"InternLM/internlm-chat-20b-4bit",
"lmdeploy/llama2-chat-70b-4bit", etc.
- iii) The model_id of a model hosted inside a model repo
on huggingface.co, such as "internlm/internlm-chat-7b",
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
and so on.
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
server_name (str): host ip for serving
server_port (int): server port
tp (int): tensor parallel
log_level (str): set log level whose value among
[CRITICAL, ERROR, WARNING, INFO, DEBUG]
"""
def __init__(self,
path: str,
model_name: Optional[str] = None,
server_name: str = '0.0.0.0',
server_port: int = 23333,
tp: int = 1,
log_level: str = 'WARNING',
serve_cfg=dict(),
**kwargs):
super().__init__(path=path, **kwargs)
self.model_name = model_name
# TODO get_logger issue in multi processing
import lmdeploy
self.client = lmdeploy.serve(
model_path=self.path,
model_name=model_name,
server_name=server_name,
server_port=server_port,
tp=tp,
log_level=log_level,
**serve_cfg)
def generate(self,
inputs: Union[str, List[str]],
session_id: int = 2967,
sequence_start: bool = True,
sequence_end: bool = True,
ignore_eos: bool = False,
skip_special_tokens: Optional[bool] = False,
timeout: int = 30,
**kwargs) -> List[str]:
"""Start a new round conversation of a session. Return the chat
completions in non-stream mode.
Args:
inputs (str, List[str]): user's prompt(s) in this round
session_id (int): the identical id of a session
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
ignore_eos (bool): indicator for ignoring eos
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
timeout (int): max time to wait for response
Returns:
(a list of/batched) text/chat completion
"""
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
gen_params.update(max_tokens=max_new_tokens)
resp = [''] * len(inputs)
for text in self.client.completions_v1(
self.model_name,
inputs,
session_id=session_id,
sequence_start=sequence_start,
sequence_end=sequence_end,
stream=False,
ignore_eos=ignore_eos,
skip_special_tokens=skip_special_tokens,
timeout=timeout,
**gen_params):
resp = [
resp[i] + item['text']
for i, item in enumerate(text['choices'])
]
# remove stop_words
resp = filter_suffix(resp, self.gen_params.get('stop_words'))
if not batched:
return resp[0]
return resp
def stream_chat(self,
inputs: List[dict],
session_id=0,
sequence_start: bool = True,
sequence_end: bool = True,
stream: bool = True,
ignore_eos: bool = False,
skip_special_tokens: Optional[bool] = False,
timeout: int = 30,
**kwargs):
"""Start a new round conversation of a session. Return the chat
completions in stream mode.
Args:
session_id (int): the identical id of a session
inputs (List[dict]): user's inputs in this round conversation
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
stream (bool): return in a streaming format if enabled
ignore_eos (bool): indicator for ignoring eos
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
timeout (int): max time to wait for response
Returns:
tuple(Status, str, int): status, text/chat completion,
generated token number
"""
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
gen_params.update(max_tokens=max_new_tokens)
prompt = self.template_parser(inputs)
resp = ''
finished = False
stop_words = self.gen_params.get('stop_words')
for text in self.client.completions_v1(
self.model_name,
prompt,
session_id=session_id,
sequence_start=sequence_start,
sequence_end=sequence_end,
stream=stream,
ignore_eos=ignore_eos,
skip_special_tokens=skip_special_tokens,
timeout=timeout,
**gen_params):
resp += text['choices'][0]['text']
if not resp:
continue
# remove stop_words
for sw in stop_words:
if sw in resp:
resp = filter_suffix(resp, stop_words)
finished = True
break
yield ModelStatusCode.STREAM_ING, resp, None
if finished:
break
yield ModelStatusCode.END, resp, None
class LMDeployClient(LMDeployServer):
"""
Args:
url (str): communicating address 'http://<ip>:<port>' of
api_server
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
"""
def __init__(self, url: str, model_name: str, **kwargs):
BaseLLM.__init__(self, path=url, **kwargs)
from lmdeploy.serve.openai.api_client import APIClient
self.client = APIClient(url)
self.model_name = model_name
class AsyncLMDeployPipeline(AsyncLLMMixin, LMDeployPipeline):
"""
Args:
path (str): The path to the model.
It could be one of the following options:
- i) A local directory path of a turbomind model which is
converted by `lmdeploy convert` command or download
from ii) and iii).
- ii) The model_id of a lmdeploy-quantized model hosted
inside a model repo on huggingface.co, such as
"InternLM/internlm-chat-20b-4bit",
"lmdeploy/llama2-chat-70b-4bit", etc.
- iii) The model_id of a model hosted inside a model repo
on huggingface.co, such as "internlm/internlm-chat-7b",
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
and so on.
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
tp (int): tensor parallel
pipeline_cfg (dict): config of pipeline
"""
async def generate(self,
inputs: Union[str, List[str]],
session_ids: Union[int, List[int]] = None,
do_preprocess: bool = None,
skip_special_tokens: bool = False,
return_dict: bool = False,
**kwargs):
"""Return the chat completions in non-stream mode.
Args:
inputs (Union[str, List[str]]): input texts to be completed.
do_preprocess (bool): whether pre-process the messages. Default to
True, which means chat_template will be applied.
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
(a list of/batched) text/chat completion
"""
from lmdeploy.messages import GenerationConfig, Response
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
if session_ids is None:
session_ids = list(range(len(inputs)))
elif isinstance(session_ids, (int, str)):
session_ids = [session_ids]
assert len(inputs) == len(session_ids)
prompt = inputs
gen_params = self.update_gen_params(**kwargs)
gen_config = GenerationConfig(
skip_special_tokens=skip_special_tokens, **gen_params)
async def _inner_generate(uid, text):
resp = Response('', 0, 0, uid)
async for out in self.model.generate(
text,
uid,
gen_config,
stream_response=True,
sequence_start=True,
sequence_end=True,
do_preprocess=do_preprocess,
**kwargs):
resp.text += out.response
resp.generate_token_len = out.generate_token_len
resp.input_token_len = out.input_token_len
resp.finish_reason = out.finish_reason
if out.token_ids:
resp.token_ids.extend(out.token_ids)
if out.logprobs:
if resp.logprobs is None:
resp.logprobs = []
resp.logprobs.extend(out.logprobs)
return resp
response = await asyncio.gather(*[
_inner_generate(sid, inp) for sid, inp in zip(session_ids, prompt)
])
texts = [resp.text for resp in response]
# remove stop_words
texts = filter_suffix(texts, self.gen_params.get('stop_words'))
for resp, text in zip(response, texts):
resp.text = text
if batched:
return [asdict(resp)
for resp in response] if return_dict else texts
return asdict(response[0]) if return_dict else texts[0]
class AsyncLMDeployServer(AsyncLLMMixin, LMDeployServer):
"""
Args:
path (str): The path to the model.
It could be one of the following options:
- i) A local directory path of a turbomind model which is
converted by `lmdeploy convert` command or download from
ii) and iii).
- ii) The model_id of a lmdeploy-quantized model hosted
inside a model repo on huggingface.co, such as
"InternLM/internlm-chat-20b-4bit",
"lmdeploy/llama2-chat-70b-4bit", etc.
- iii) The model_id of a model hosted inside a model repo
on huggingface.co, such as "internlm/internlm-chat-7b",
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
and so on.
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
server_name (str): host ip for serving
server_port (int): server port
tp (int): tensor parallel
log_level (str): set log level whose value among
[CRITICAL, ERROR, WARNING, INFO, DEBUG]
"""
async def generate(
self,
inputs: Union[str, List[str]],
session_ids: Union[int, List[int]] = None,
sequence_start: bool = True,
sequence_end: bool = True,
ignore_eos: bool = False,
skip_special_tokens: Optional[bool] = False,
timeout: int = 30,
**kwargs,
):
"""Start a new round conversation of a session. Return the chat
completions in non-stream mode.
Args:
inputs (str, List[str]): user's prompt(s) in this round
session_ids (int, List[int]): session id(s)
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
ignore_eos (bool): indicator for ignoring eos
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
timeout (int): max time to wait for response
Returns:
(a list of/batched) text/chat completion
"""
from lmdeploy.serve.openai.api_client import json_loads
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
gen_params.update(max_tokens=max_new_tokens)
responses = [''] * len(inputs)
pload = dict(
model=self.model_name,
prompt=inputs,
sequence_start=sequence_start,
sequence_end=sequence_end,
stream=False,
ignore_eos=ignore_eos,
skip_special_tokens=skip_special_tokens,
timeout=timeout,
**gen_params)
async with aiohttp.ClientSession(
timeout=aiohttp.ClientTimeout(3 * 3600)) as session:
async with session.post(
self.client.completions_v1_url,
headers=self.client.headers,
json=pload) as resp:
async for chunk in resp.content:
if chunk:
decoded = chunk.decode('utf-8')
output = json_loads(decoded)
responses = [
response + item['text'] for response, item in zip(
responses, output['choices'])
]
# remove stop_words
responses = filter_suffix(responses, self.gen_params.get('stop_words'))
if not batched:
return responses[0]
return responses
async def stream_chat(
self,
inputs: List[dict],
session_id: int = None,
sequence_start: bool = True,
sequence_end: bool = True,
stream: bool = True,
ignore_eos: bool = False,
skip_special_tokens: Optional[bool] = False,
timeout: int = 30,
**kwargs,
):
"""Start a new round conversation of a session. Return the chat
completions in stream mode.
Args:
inputs (List[dict]): user's inputs in this round conversation
session_id (int): session id
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
stream (bool): return in a streaming format if enabled
ignore_eos (bool): indicator for ignoring eos
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
timeout (int): max time to wait for response
Returns:
tuple(Status, str, int): status, text/chat completion,
generated token number
"""
from lmdeploy.serve.openai.api_client import json_loads
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
gen_params.update(max_tokens=max_new_tokens)
prompt = self.template_parser(inputs)
response = ''
finished = False
stop_words = self.gen_params.get('stop_words')
pload = dict(
model=self.model_name,
prompt=prompt,
sequence_start=sequence_start,
sequence_end=sequence_end,
stream=stream,
ignore_eos=ignore_eos,
skip_special_tokens=skip_special_tokens,
timeout=timeout,
**gen_params)
async with aiohttp.ClientSession(
timeout=aiohttp.ClientTimeout(3 * 3600)) as session:
async with session.post(
self.client.completions_v1_url,
headers=self.client.headers,
json=pload) as resp:
async for chunk in resp.content:
if chunk:
decoded = chunk.decode('utf-8')
if not decoded.strip() or decoded.rstrip(
) == 'data: [DONE]':
continue
if decoded[:6] == 'data: ':
decoded = decoded[6:]
output = json_loads(decoded)
response += output['choices'][0]['text']
if not response:
continue
# remove stop_words
for sw in stop_words:
if sw in response:
response = filter_suffix(response, stop_words)
finished = True
break
yield ModelStatusCode.STREAM_ING, response, None
if finished:
break
yield ModelStatusCode.END, response, None
class AsyncLMDeployClient(AsyncLMDeployServer):
"""
Args:
url (str): communicating address 'http://<ip>:<port>' of
api_server
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
"""
def __init__(self, url: str, model_name: str, **kwargs):
BaseLLM.__init__(self, path=url, **kwargs)
from lmdeploy.serve.openai.api_client import APIClient
self.client = APIClient(url)
self.model_name = model_name