Lagent / lagent /llms /openai.py
Superkingjcj's picture
Upload 111 files
e679d69 verified
raw
history blame
35.4 kB
import asyncio
import json
import os
import time
import traceback
import warnings
from concurrent.futures import ThreadPoolExecutor
from logging import getLogger
from threading import Lock
from typing import AsyncGenerator, Dict, List, Optional, Union
import aiohttp
import requests
from ..schema import ModelStatusCode
from ..utils import filter_suffix
from .base_api import AsyncBaseAPILLM, BaseAPILLM
warnings.simplefilter('default')
OPENAI_API_BASE = 'https://api.openai.com/v1/chat/completions'
class GPTAPI(BaseAPILLM):
"""Model wrapper around OpenAI's models.
Args:
model_type (str): The name of OpenAI's model.
retry (int): Number of retires if the API call fails. Defaults to 2.
key (str or List[str]): OpenAI key(s). In particular, when it
is set to "ENV", the key will be fetched from the environment
variable $OPENAI_API_KEY, as how openai defaults to be. If it's a
list, the keys will be used in round-robin manner. Defaults to
'ENV'.
org (str or List[str], optional): OpenAI organization(s). If not
specified, OpenAI uses the default organization bound to each API
key. If specified, the orgs will be posted with each request in
round-robin manner. Defaults to None.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
api_base (str): The base url of OpenAI's API. Defaults to
'https://api.openai.com/v1/chat/completions'.
gen_params: Default generation configuration which could be overridden
on the fly of generation.
"""
is_api: bool = True
def __init__(self,
model_type: str = 'gpt-3.5-turbo',
retry: int = 2,
json_mode: bool = False,
key: Union[str, List[str]] = 'ENV',
org: Optional[Union[str, List[str]]] = None,
meta_template: Optional[Dict] = [
dict(role='system', api_role='system'),
dict(role='user', api_role='user'),
dict(role='assistant', api_role='assistant'),
dict(role='environment', api_role='system')
],
api_base: str = OPENAI_API_BASE,
proxies: Optional[Dict] = None,
**gen_params):
if 'top_k' in gen_params:
warnings.warn('`top_k` parameter is deprecated in OpenAI APIs.',
DeprecationWarning)
gen_params.pop('top_k')
super().__init__(
model_type=model_type,
meta_template=meta_template,
retry=retry,
**gen_params)
self.gen_params.pop('top_k')
self.logger = getLogger(__name__)
if isinstance(key, str):
self.keys = [os.getenv('OPENAI_API_KEY') if key == 'ENV' else key]
else:
self.keys = key
# record invalid keys and skip them when requesting API
# - keys have insufficient_quota
self.invalid_keys = set()
self.key_ctr = 0
if isinstance(org, str):
self.orgs = [org]
else:
self.orgs = org
self.org_ctr = 0
self.url = api_base
self.model_type = model_type
self.proxies = proxies
self.json_mode = json_mode
def chat(
self,
inputs: Union[List[dict], List[List[dict]]],
**gen_params,
) -> Union[str, List[str]]:
"""Generate responses given the contexts.
Args:
inputs (Union[List[dict], List[List[dict]]]): a list of messages
or list of lists of messages
gen_params: additional generation configuration
Returns:
Union[str, List[str]]: generated string(s)
"""
assert isinstance(inputs, list)
if 'max_tokens' in gen_params:
raise NotImplementedError('unsupported parameter: max_tokens')
gen_params = {**self.gen_params, **gen_params}
with ThreadPoolExecutor(max_workers=20) as executor:
tasks = [
executor.submit(self._chat,
self.template_parser._prompt2api(messages),
**gen_params)
for messages in (
[inputs] if isinstance(inputs[0], dict) else inputs)
]
ret = [task.result() for task in tasks]
return ret[0] if isinstance(inputs[0], dict) else ret
def stream_chat(
self,
inputs: List[dict],
**gen_params,
):
"""Generate responses given the contexts.
Args:
inputs (List[dict]): a list of messages
gen_params: additional generation configuration
Returns:
str: generated string
"""
assert isinstance(inputs, list)
if 'max_tokens' in gen_params:
raise NotImplementedError('unsupported parameter: max_tokens')
gen_params = self.update_gen_params(**gen_params)
gen_params['stream'] = True
resp = ''
finished = False
stop_words = gen_params.get('stop_words')
if stop_words is None:
stop_words = []
# mapping to role that openai supports
messages = self.template_parser._prompt2api(inputs)
for text in self._stream_chat(messages, **gen_params):
if self.model_type.lower().startswith('qwen'):
resp = text
else:
resp += text
if not resp:
continue
# remove stop_words
for sw in stop_words:
if sw in resp:
resp = filter_suffix(resp, stop_words)
finished = True
break
yield ModelStatusCode.STREAM_ING, resp, None
if finished:
break
yield ModelStatusCode.END, resp, None
def _chat(self, messages: List[dict], **gen_params) -> str:
"""Generate completion from a list of templates.
Args:
messages (List[dict]): a list of prompt dictionaries
gen_params: additional generation configuration
Returns:
str: The generated string.
"""
assert isinstance(messages, list)
header, data = self.generate_request_data(
model_type=self.model_type,
messages=messages,
gen_params=gen_params,
json_mode=self.json_mode)
max_num_retries, errmsg = 0, ''
while max_num_retries < self.retry:
with Lock():
if len(self.invalid_keys) == len(self.keys):
raise RuntimeError('All keys have insufficient quota.')
# find the next valid key
while True:
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
if self.keys[self.key_ctr] not in self.invalid_keys:
break
key = self.keys[self.key_ctr]
header['Authorization'] = f'Bearer {key}'
if self.orgs:
with Lock():
self.org_ctr += 1
if self.org_ctr == len(self.orgs):
self.org_ctr = 0
header['OpenAI-Organization'] = self.orgs[self.org_ctr]
response = dict()
try:
raw_response = requests.post(
self.url,
headers=header,
data=json.dumps(data),
proxies=self.proxies)
response = raw_response.json()
return response['choices'][0]['message']['content'].strip()
except requests.ConnectionError:
errmsg = 'Got connection error ' + str(traceback.format_exc())
self.logger.error(errmsg)
continue
except requests.JSONDecodeError:
errmsg = 'JsonDecode error, got ' + str(raw_response.content)
self.logger.error(errmsg)
continue
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(1)
continue
elif response['error']['code'] == 'insufficient_quota':
self.invalid_keys.add(key)
self.logger.warn(f'insufficient_quota key: {key}')
continue
errmsg = 'Find error message in response: ' + str(
response['error'])
self.logger.error(errmsg)
except Exception as error:
errmsg = str(error) + '\n' + str(traceback.format_exc())
self.logger.error(errmsg)
max_num_retries += 1
raise RuntimeError('Calling OpenAI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
f'details. errmsg: {errmsg}')
def _stream_chat(self, messages: List[dict], **gen_params) -> str:
"""Generate completion from a list of templates.
Args:
messages (List[dict]): a list of prompt dictionaries
gen_params: additional generation configuration
Returns:
str: The generated string.
"""
def streaming(raw_response):
for chunk in raw_response.iter_lines(
chunk_size=8192, decode_unicode=False, delimiter=b'\n'):
if chunk:
decoded = chunk.decode('utf-8')
if decoded.startswith('data: [DONE]'):
return
if decoded[:5] == 'data:':
decoded = decoded[5:]
if decoded[0] == ' ':
decoded = decoded[1:]
else:
print(decoded)
continue
try:
response = json.loads(decoded)
if 'code' in response and response['code'] == -20003:
# Context exceeds maximum length
yield ''
return
if self.model_type.lower().startswith('qwen'):
choice = response['output']['choices'][0]
yield choice['message']['content']
if choice['finish_reason'] == 'stop':
return
else:
choice = response['choices'][0]
if choice['finish_reason'] == 'stop':
return
yield choice['delta'].get('content', '')
except Exception as exc:
msg = f'response {decoded} lead to exception of {str(exc)}'
self.logger.error(msg)
raise Exception(msg) from exc
assert isinstance(messages, list)
header, data = self.generate_request_data(
model_type=self.model_type,
messages=messages,
gen_params=gen_params,
json_mode=self.json_mode)
max_num_retries, errmsg = 0, ''
while max_num_retries < self.retry:
if len(self.invalid_keys) == len(self.keys):
raise RuntimeError('All keys have insufficient quota.')
# find the next valid key
while True:
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
if self.keys[self.key_ctr] not in self.invalid_keys:
break
key = self.keys[self.key_ctr]
header['Authorization'] = f'Bearer {key}'
if self.orgs:
self.org_ctr += 1
if self.org_ctr == len(self.orgs):
self.org_ctr = 0
header['OpenAI-Organization'] = self.orgs[self.org_ctr]
response = dict()
try:
raw_response = requests.post(
self.url,
headers=header,
data=json.dumps(data),
proxies=self.proxies)
return streaming(raw_response)
except requests.ConnectionError:
errmsg = 'Got connection error ' + str(traceback.format_exc())
self.logger.error(errmsg)
continue
except requests.JSONDecodeError:
errmsg = 'JsonDecode error, got ' + str(raw_response.content)
self.logger.error(errmsg)
continue
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(1)
continue
elif response['error']['code'] == 'insufficient_quota':
self.invalid_keys.add(key)
self.logger.warn(f'insufficient_quota key: {key}')
continue
errmsg = 'Find error message in response: ' + str(
response['error'])
self.logger.error(errmsg)
except Exception as error:
errmsg = str(error) + '\n' + str(traceback.format_exc())
self.logger.error(errmsg)
max_num_retries += 1
raise RuntimeError('Calling OpenAI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
f'details. errmsg: {errmsg}')
def generate_request_data(self,
model_type,
messages,
gen_params,
json_mode=False):
"""
Generates the request data for different model types.
Args:
model_type (str): The type of the model (e.g., 'gpt', 'internlm', 'qwen').
messages (list): The list of messages to be sent to the model.
gen_params (dict): The generation parameters.
json_mode (bool): Flag to determine if the response format should be JSON.
Returns:
tuple: A tuple containing the header and the request data.
"""
# Copy generation parameters to avoid modifying the original dictionary
gen_params = gen_params.copy()
# Hold out 100 tokens due to potential errors in token calculation
max_tokens = min(gen_params.pop('max_new_tokens'), 4096)
if max_tokens <= 0:
return '', ''
# Initialize the header
header = {
'content-type': 'application/json',
}
# Common parameters processing
gen_params['max_tokens'] = max_tokens
if 'stop_words' in gen_params:
gen_params['stop'] = gen_params.pop('stop_words')
if 'repetition_penalty' in gen_params:
gen_params['frequency_penalty'] = gen_params.pop(
'repetition_penalty')
# Model-specific processing
data = {}
if model_type.lower().startswith('gpt'):
if 'top_k' in gen_params:
warnings.warn(
'`top_k` parameter is deprecated in OpenAI APIs.',
DeprecationWarning)
gen_params.pop('top_k')
gen_params.pop('skip_special_tokens', None)
gen_params.pop('session_id', None)
data = {
'model': model_type,
'messages': messages,
'n': 1,
**gen_params
}
if json_mode:
data['response_format'] = {'type': 'json_object'}
elif model_type.lower().startswith('internlm'):
data = {
'model': model_type,
'messages': messages,
'n': 1,
**gen_params
}
if json_mode:
data['response_format'] = {'type': 'json_object'}
elif model_type.lower().startswith('qwen'):
header['X-DashScope-SSE'] = 'enable'
gen_params.pop('skip_special_tokens', None)
gen_params.pop('session_id', None)
if 'frequency_penalty' in gen_params:
gen_params['repetition_penalty'] = gen_params.pop(
'frequency_penalty')
gen_params['result_format'] = 'message'
data = {
'model': model_type,
'input': {
'messages': messages
},
'parameters': {
**gen_params
}
}
else:
raise NotImplementedError(
f'Model type {model_type} is not supported')
return header, data
def tokenize(self, prompt: str) -> list:
"""Tokenize the input prompt.
Args:
prompt (str): Input string.
Returns:
list: token ids
"""
import tiktoken
self.tiktoken = tiktoken
enc = self.tiktoken.encoding_for_model(self.model_type)
return enc.encode(prompt)
class AsyncGPTAPI(AsyncBaseAPILLM):
"""Model wrapper around OpenAI's models.
Args:
model_type (str): The name of OpenAI's model.
retry (int): Number of retires if the API call fails. Defaults to 2.
key (str or List[str]): OpenAI key(s). In particular, when it
is set to "ENV", the key will be fetched from the environment
variable $OPENAI_API_KEY, as how openai defaults to be. If it's a
list, the keys will be used in round-robin manner. Defaults to
'ENV'.
org (str or List[str], optional): OpenAI organization(s). If not
specified, OpenAI uses the default organization bound to each API
key. If specified, the orgs will be posted with each request in
round-robin manner. Defaults to None.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
api_base (str): The base url of OpenAI's API. Defaults to
'https://api.openai.com/v1/chat/completions'.
gen_params: Default generation configuration which could be overridden
on the fly of generation.
"""
is_api: bool = True
def __init__(self,
model_type: str = 'gpt-3.5-turbo',
retry: int = 2,
json_mode: bool = False,
key: Union[str, List[str]] = 'ENV',
org: Optional[Union[str, List[str]]] = None,
meta_template: Optional[Dict] = [
dict(role='system', api_role='system'),
dict(role='user', api_role='user'),
dict(role='assistant', api_role='assistant')
],
api_base: str = OPENAI_API_BASE,
proxies: Optional[Dict] = None,
**gen_params):
if 'top_k' in gen_params:
warnings.warn('`top_k` parameter is deprecated in OpenAI APIs.',
DeprecationWarning)
gen_params.pop('top_k')
super().__init__(
model_type=model_type,
meta_template=meta_template,
retry=retry,
**gen_params)
self.gen_params.pop('top_k')
self.logger = getLogger(__name__)
if isinstance(key, str):
self.keys = [os.getenv('OPENAI_API_KEY') if key == 'ENV' else key]
else:
self.keys = key
# record invalid keys and skip them when requesting API
# - keys have insufficient_quota
self.invalid_keys = set()
self.key_ctr = 0
if isinstance(org, str):
self.orgs = [org]
else:
self.orgs = org
self.org_ctr = 0
self.url = api_base
self.model_type = model_type
self.proxies = proxies or {}
self.json_mode = json_mode
async def chat(
self,
inputs: Union[List[dict], List[List[dict]]],
session_ids: Union[int, List[int]] = None,
**gen_params,
) -> Union[str, List[str]]:
"""Generate responses given the contexts.
Args:
inputs (Union[List[dict], List[List[dict]]]): a list of messages
or list of lists of messages
gen_params: additional generation configuration
Returns:
Union[str, List[str]]: generated string(s)
"""
assert isinstance(inputs, list)
if 'max_tokens' in gen_params:
raise NotImplementedError('unsupported parameter: max_tokens')
gen_params = {**self.gen_params, **gen_params}
tasks = [
self._chat(messages, **gen_params) for messages in (
[inputs] if isinstance(inputs[0], dict) else inputs)
]
ret = await asyncio.gather(*tasks)
return ret[0] if isinstance(inputs[0], dict) else ret
async def stream_chat(
self,
inputs: List[dict],
**gen_params,
):
"""Generate responses given the contexts.
Args:
inputs (List[dict]): a list of messages
gen_params: additional generation configuration
Returns:
str: generated string
"""
assert isinstance(inputs, list)
if 'max_tokens' in gen_params:
raise NotImplementedError('unsupported parameter: max_tokens')
gen_params = self.update_gen_params(**gen_params)
gen_params['stream'] = True
resp = ''
finished = False
stop_words = gen_params.get('stop_words')
if stop_words is None:
stop_words = []
# mapping to role that openai supports
messages = self.template_parser._prompt2api(inputs)
async for text in self._stream_chat(messages, **gen_params):
if self.model_type.lower().startswith('qwen'):
resp = text
else:
resp += text
if not resp:
continue
# remove stop_words
for sw in stop_words:
if sw in resp:
resp = filter_suffix(resp, stop_words)
finished = True
break
yield ModelStatusCode.STREAM_ING, resp, None
if finished:
break
yield ModelStatusCode.END, resp, None
async def _chat(self, messages: List[dict], **gen_params) -> str:
"""Generate completion from a list of templates.
Args:
messages (List[dict]): a list of prompt dictionaries
gen_params: additional generation configuration
Returns:
str: The generated string.
"""
assert isinstance(messages, list)
header, data = self.generate_request_data(
model_type=self.model_type,
messages=messages,
gen_params=gen_params,
json_mode=self.json_mode)
max_num_retries, errmsg = 0, ''
while max_num_retries < self.retry:
if len(self.invalid_keys) == len(self.keys):
raise RuntimeError('All keys have insufficient quota.')
# find the next valid key
while True:
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
if self.keys[self.key_ctr] not in self.invalid_keys:
break
key = self.keys[self.key_ctr]
header['Authorization'] = f'Bearer {key}'
if self.orgs:
self.org_ctr += 1
if self.org_ctr == len(self.orgs):
self.org_ctr = 0
header['OpenAI-Organization'] = self.orgs[self.org_ctr]
response = dict()
try:
async with aiohttp.ClientSession() as session:
async with session.post(
self.url,
headers=header,
json=data,
proxy=self.proxies.get(
'https', self.proxies.get('http'))) as resp:
response = await resp.json()
return response['choices'][0]['message'][
'content'].strip()
except aiohttp.ClientConnectionError:
errmsg = 'Got connection error ' + str(traceback.format_exc())
self.logger.error(errmsg)
continue
except aiohttp.ClientResponseError as e:
errmsg = 'Response error, got ' + str(e)
self.logger.error(errmsg)
continue
except json.JSONDecodeError:
errmsg = 'JsonDecode error, got ' + (await resp.text(
errors='replace'))
self.logger.error(errmsg)
continue
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(1)
continue
elif response['error']['code'] == 'insufficient_quota':
self.invalid_keys.add(key)
self.logger.warn(f'insufficient_quota key: {key}')
continue
errmsg = 'Find error message in response: ' + str(
response['error'])
self.logger.error(errmsg)
except Exception as error:
errmsg = str(error) + '\n' + str(traceback.format_exc())
self.logger.error(errmsg)
max_num_retries += 1
raise RuntimeError('Calling OpenAI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
f'details. errmsg: {errmsg}')
async def _stream_chat(self, messages: List[dict],
**gen_params) -> AsyncGenerator[str, None]:
"""Generate completion from a list of templates.
Args:
messages (List[dict]): a list of prompt dictionaries
gen_params: additional generation configuration
Returns:
str: The generated string.
"""
async def streaming(raw_response):
async for chunk in raw_response.content:
if chunk:
decoded = chunk.decode('utf-8')
if decoded.startswith('data: [DONE]'):
return
if decoded[:5] == 'data:':
decoded = decoded[5:]
if decoded[0] == ' ':
decoded = decoded[1:]
else:
print(decoded)
continue
try:
response = json.loads(decoded)
if 'code' in response and response['code'] == -20003:
# Context exceeds maximum length
yield ''
return
if self.model_type.lower().startswith('qwen'):
choice = response['output']['choices'][0]
yield choice['message']['content']
if choice['finish_reason'] == 'stop':
return
else:
choice = response['choices'][0]
if choice['finish_reason'] == 'stop':
return
yield choice['delta'].get('content', '')
except Exception as exc:
msg = f'response {decoded} lead to exception of {str(exc)}'
self.logger.error(msg)
raise Exception(msg) from exc
assert isinstance(messages, list)
header, data = self.generate_request_data(
model_type=self.model_type,
messages=messages,
gen_params=gen_params,
json_mode=self.json_mode)
max_num_retries, errmsg = 0, ''
while max_num_retries < self.retry:
if len(self.invalid_keys) == len(self.keys):
raise RuntimeError('All keys have insufficient quota.')
# find the next valid key
while True:
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
if self.keys[self.key_ctr] not in self.invalid_keys:
break
key = self.keys[self.key_ctr]
header['Authorization'] = f'Bearer {key}'
if self.orgs:
self.org_ctr += 1
if self.org_ctr == len(self.orgs):
self.org_ctr = 0
header['OpenAI-Organization'] = self.orgs[self.org_ctr]
response = dict()
try:
async with aiohttp.ClientSession() as session:
async with session.post(
self.url,
headers=header,
json=data,
proxy=self.proxies.get(
'https',
self.proxies.get('http'))) as raw_response:
async for msg in streaming(raw_response):
yield msg
return
except aiohttp.ClientConnectionError:
errmsg = 'Got connection error ' + str(traceback.format_exc())
self.logger.error(errmsg)
continue
except aiohttp.ClientResponseError as e:
errmsg = 'Response error, got ' + str(e)
self.logger.error(errmsg)
continue
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(1)
continue
elif response['error']['code'] == 'insufficient_quota':
self.invalid_keys.add(key)
self.logger.warn(f'insufficient_quota key: {key}')
continue
errmsg = 'Find error message in response: ' + str(
response['error'])
self.logger.error(errmsg)
except Exception as error:
errmsg = str(error) + '\n' + str(traceback.format_exc())
self.logger.error(errmsg)
max_num_retries += 1
raise RuntimeError('Calling OpenAI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
f'details. errmsg: {errmsg}')
def generate_request_data(self,
model_type,
messages,
gen_params,
json_mode=False):
"""
Generates the request data for different model types.
Args:
model_type (str): The type of the model (e.g., 'gpt', 'internlm', 'qwen').
messages (list): The list of messages to be sent to the model.
gen_params (dict): The generation parameters.
json_mode (bool): Flag to determine if the response format should be JSON.
Returns:
tuple: A tuple containing the header and the request data.
"""
# Copy generation parameters to avoid modifying the original dictionary
gen_params = gen_params.copy()
# Hold out 100 tokens due to potential errors in token calculation
max_tokens = min(gen_params.pop('max_new_tokens'), 4096)
if max_tokens <= 0:
return '', ''
# Initialize the header
header = {
'content-type': 'application/json',
}
# Common parameters processing
gen_params['max_tokens'] = max_tokens
if 'stop_words' in gen_params:
gen_params['stop'] = gen_params.pop('stop_words')
if 'repetition_penalty' in gen_params:
gen_params['frequency_penalty'] = gen_params.pop(
'repetition_penalty')
# Model-specific processing
data = {}
if model_type.lower().startswith('gpt'):
if 'top_k' in gen_params:
warnings.warn(
'`top_k` parameter is deprecated in OpenAI APIs.',
DeprecationWarning)
gen_params.pop('top_k')
gen_params.pop('skip_special_tokens', None)
gen_params.pop('session_id', None)
data = {
'model': model_type,
'messages': messages,
'n': 1,
**gen_params
}
if json_mode:
data['response_format'] = {'type': 'json_object'}
elif model_type.lower().startswith('internlm'):
data = {
'model': model_type,
'messages': messages,
'n': 1,
**gen_params
}
if json_mode:
data['response_format'] = {'type': 'json_object'}
elif model_type.lower().startswith('qwen'):
header['X-DashScope-SSE'] = 'enable'
gen_params.pop('skip_special_tokens', None)
gen_params.pop('session_id', None)
if 'frequency_penalty' in gen_params:
gen_params['repetition_penalty'] = gen_params.pop(
'frequency_penalty')
gen_params['result_format'] = 'message'
data = {
'model': model_type,
'input': {
'messages': messages
},
'parameters': {
**gen_params
}
}
else:
raise NotImplementedError(
f'Model type {model_type} is not supported')
return header, data
def tokenize(self, prompt: str) -> list:
"""Tokenize the input prompt.
Args:
prompt (str): Input string.
Returns:
list: token ids
"""
import tiktoken
self.tiktoken = tiktoken
enc = self.tiktoken.encoding_for_model(self.model_type)
return enc.encode(prompt)