Spaces:
Running
Running
import json | |
import os | |
import time | |
import warnings | |
from concurrent.futures import ThreadPoolExecutor | |
from logging import getLogger | |
from threading import Lock | |
from typing import Dict, Generator, List, Optional, Tuple, Union | |
import requests | |
from lagent.schema import ModelStatusCode | |
from lagent.utils.util import filter_suffix | |
from .base_api import BaseAPILLM | |
warnings.simplefilter('default') | |
SENSENOVA_API_BASE = 'https://api.sensenova.cn/v1/llm/chat-completions' | |
sensechat_models = {'SenseChat-5': 131072, 'SenseChat-5-Cantonese': 32768} | |
class SensenovaAPI(BaseAPILLM): | |
"""Model wrapper around SenseTime's models. | |
Args: | |
model_type (str): The name of SenseTime's model. | |
retry (int): Number of retires if the API call fails. Defaults to 2. | |
key (str or List[str]): SenseTime key(s). In particular, when it | |
is set to "ENV", the key will be fetched from the environment | |
variable $SENSENOVA_API_KEY. If it's a list, the keys will be | |
used in round-robin manner. Defaults to 'ENV'. | |
meta_template (Dict, optional): The model's meta prompt | |
template if needed, in case the requirement of injecting or | |
wrapping of any meta instructions. | |
sensenova_api_base (str): The base url of SenseTime's API. Defaults to | |
'https://api.sensenova.cn/v1/llm/chat-completions'. | |
gen_params: Default generation configuration which could be overridden | |
on the fly of generation. | |
""" | |
is_api: bool = True | |
def __init__( | |
self, | |
model_type: str = 'SenseChat-5-Cantonese', | |
retry: int = 2, | |
json_mode: bool = False, | |
key: Union[str, List[str]] = 'ENV', | |
meta_template: Optional[Dict] = [ | |
dict(role='system', api_role='system'), | |
dict(role='user', api_role='user'), | |
dict(role='assistant', api_role='assistant'), | |
dict(role='environment', api_role='system'), | |
], | |
sensenova_api_base: str = SENSENOVA_API_BASE, | |
proxies: Optional[Dict] = None, | |
**gen_params, | |
): | |
super().__init__( | |
model_type=model_type, | |
meta_template=meta_template, | |
retry=retry, | |
**gen_params, | |
) | |
self.logger = getLogger(__name__) | |
if isinstance(key, str): | |
# First, apply for SenseNova's ak and sk from SenseTime staff | |
# Then, generated SENSENOVA_API_KEY using lagent.utils.gen_key.auto_gen_jwt_token(ak, sk) | |
self.keys = [ | |
os.getenv('SENSENOVA_API_KEY') if key == 'ENV' else key | |
] | |
else: | |
self.keys = key | |
# record invalid keys and skip them when requesting API | |
# - keys have insufficient_quota | |
self.invalid_keys = set() | |
self.key_ctr = 0 | |
self.url = sensenova_api_base | |
self.model_type = model_type | |
self.proxies = proxies | |
self.json_mode = json_mode | |
def chat( | |
self, | |
inputs: Union[List[dict], List[List[dict]]], | |
**gen_params, | |
) -> Union[str, List[str]]: | |
"""Generate responses given the contexts. | |
Args: | |
inputs (Union[List[dict], List[List[dict]]]): a list of messages | |
or list of lists of messages | |
gen_params: additional generation configuration | |
Returns: | |
Union[str, List[str]]: generated string(s) | |
""" | |
assert isinstance(inputs, list) | |
if 'max_tokens' in gen_params: | |
raise NotImplementedError('unsupported parameter: max_tokens') | |
gen_params = {**self.gen_params, **gen_params} | |
with ThreadPoolExecutor(max_workers=20) as executor: | |
tasks = [ | |
executor.submit(self._chat, | |
self.template_parser._prompt2api(messages), | |
**gen_params) | |
for messages in ( | |
[inputs] if isinstance(inputs[0], dict) else inputs) | |
] | |
ret = [task.result() for task in tasks] | |
return ret[0] if isinstance(inputs[0], dict) else ret | |
def stream_chat( | |
self, | |
inputs: List[dict], | |
**gen_params, | |
) -> Generator[Tuple[ModelStatusCode, str, Optional[str]], None, None]: | |
"""Generate responses given the contexts. | |
Args: | |
inputs (List[dict]): a list of messages | |
gen_params: additional generation configuration | |
Yields: | |
Tuple[ModelStatusCode, str, Optional[str]]: Status code, generated string, and optional metadata | |
""" | |
assert isinstance(inputs, list) | |
if 'max_tokens' in gen_params: | |
raise NotImplementedError('unsupported parameter: max_tokens') | |
gen_params = self.update_gen_params(**gen_params) | |
gen_params['stream'] = True | |
resp = '' | |
finished = False | |
stop_words = gen_params.get('stop_words') or [] | |
messages = self.template_parser._prompt2api(inputs) | |
for text in self._stream_chat(messages, **gen_params): | |
# TODO 测试 resp = text 还是 resp += text | |
resp += text | |
if not resp: | |
continue | |
# remove stop_words | |
for sw in stop_words: | |
if sw in resp: | |
resp = filter_suffix(resp, stop_words) | |
finished = True | |
break | |
yield ModelStatusCode.STREAM_ING, resp, None | |
if finished: | |
break | |
yield ModelStatusCode.END, resp, None | |
def _chat(self, messages: List[dict], **gen_params) -> str: | |
"""Generate completion from a list of templates. | |
Args: | |
messages (List[dict]): a list of prompt dictionaries | |
gen_params: additional generation configuration | |
Returns: | |
str: The generated string. | |
""" | |
assert isinstance(messages, list) | |
header, data = self.generate_request_data( | |
model_type=self.model_type, | |
messages=messages, | |
gen_params=gen_params, | |
json_mode=self.json_mode, | |
) | |
max_num_retries = 0 | |
while max_num_retries < self.retry: | |
self._wait() | |
with Lock(): | |
if len(self.invalid_keys) == len(self.keys): | |
raise RuntimeError('All keys have insufficient quota.') | |
# find the next valid key | |
while True: | |
self.key_ctr += 1 | |
if self.key_ctr == len(self.keys): | |
self.key_ctr = 0 | |
if self.keys[self.key_ctr] not in self.invalid_keys: | |
break | |
key = self.keys[self.key_ctr] | |
header['Authorization'] = f'Bearer {key}' | |
response = dict() | |
try: | |
raw_response = requests.post( | |
self.url, | |
headers=header, | |
data=json.dumps(data), | |
proxies=self.proxies, | |
) | |
response = raw_response.json() | |
return response['choices'][0]['message']['content'].strip() | |
except requests.ConnectionError: | |
print('Got connection error, retrying...') | |
continue | |
except requests.JSONDecodeError: | |
print('JsonDecode error, got', str(raw_response.content)) | |
continue | |
except KeyError: | |
if 'error' in response: | |
if response['error']['code'] == 'rate_limit_exceeded': | |
time.sleep(1) | |
continue | |
elif response['error']['code'] == 'insufficient_quota': | |
self.invalid_keys.add(key) | |
self.logger.warn(f'insufficient_quota key: {key}') | |
continue | |
print('Find error message in response: ', | |
str(response['error'])) | |
except Exception as error: | |
print(str(error)) | |
max_num_retries += 1 | |
raise RuntimeError('Calling SenseTime failed after retrying for ' | |
f'{max_num_retries} times. Check the logs for ' | |
'details.') | |
def _stream_chat(self, messages: List[dict], **gen_params) -> str: | |
"""Generate completion from a list of templates. | |
Args: | |
messages (List[dict]): a list of prompt dictionaries | |
gen_params: additional generation configuration | |
Returns: | |
str: The generated string. | |
""" | |
def streaming(raw_response): | |
for chunk in raw_response.iter_lines(): | |
if chunk: | |
try: | |
decoded_chunk = chunk.decode('utf-8') | |
# print(f"Decoded chunk: {decoded_chunk}") | |
if decoded_chunk == 'data:[DONE]': | |
# print("Stream ended") | |
break | |
if decoded_chunk.startswith('data:'): | |
json_str = decoded_chunk[5:] | |
chunk_data = json.loads(json_str) | |
if 'data' in chunk_data and 'choices' in chunk_data[ | |
'data']: | |
choice = chunk_data['data']['choices'][0] | |
if 'delta' in choice: | |
content = choice['delta'] | |
yield content | |
else: | |
print(f'Unexpected format: {decoded_chunk}') | |
except json.JSONDecodeError as e: | |
print(f'JSON parsing error: {e}') | |
except Exception as e: | |
print( | |
f'An error occurred while processing the chunk: {e}' | |
) | |
assert isinstance(messages, list) | |
header, data = self.generate_request_data( | |
model_type=self.model_type, | |
messages=messages, | |
gen_params=gen_params, | |
json_mode=self.json_mode, | |
) | |
max_num_retries = 0 | |
while max_num_retries < self.retry: | |
if len(self.invalid_keys) == len(self.keys): | |
raise RuntimeError('All keys have insufficient quota.') | |
# find the next valid key | |
while True: | |
self.key_ctr += 1 | |
if self.key_ctr == len(self.keys): | |
self.key_ctr = 0 | |
if self.keys[self.key_ctr] not in self.invalid_keys: | |
break | |
key = self.keys[self.key_ctr] | |
header['Authorization'] = f'Bearer {key}' | |
response = dict() | |
try: | |
raw_response = requests.post( | |
self.url, | |
headers=header, | |
data=json.dumps(data), | |
proxies=self.proxies, | |
) | |
return streaming(raw_response) | |
except requests.ConnectionError: | |
print('Got connection error, retrying...') | |
continue | |
except requests.JSONDecodeError: | |
print('JsonDecode error, got', str(raw_response.content)) | |
continue | |
except KeyError: | |
if 'error' in response: | |
if response['error']['code'] == 'rate_limit_exceeded': | |
time.sleep(1) | |
continue | |
elif response['error']['code'] == 'insufficient_quota': | |
self.invalid_keys.add(key) | |
self.logger.warn(f'insufficient_quota key: {key}') | |
continue | |
print('Find error message in response: ', | |
str(response['error'])) | |
except Exception as error: | |
print(str(error)) | |
max_num_retries += 1 | |
raise RuntimeError('Calling SenseTime failed after retrying for ' | |
f'{max_num_retries} times. Check the logs for ' | |
'details.') | |
def generate_request_data(self, | |
model_type, | |
messages, | |
gen_params, | |
json_mode=False): | |
""" | |
Generates the request data for different model types. | |
Args: | |
model_type (str): The type of the model (e.g., 'sense'). | |
messages (list): The list of messages to be sent to the model. | |
gen_params (dict): The generation parameters. | |
json_mode (bool): Flag to determine if the response format should be JSON. | |
Returns: | |
tuple: A tuple containing the header and the request data. | |
""" | |
# Copy generation parameters to avoid modifying the original dictionary | |
gen_params = gen_params.copy() | |
# Hold out 100 tokens due to potential errors in token calculation | |
max_tokens = min(gen_params.pop('max_new_tokens'), 4096) | |
if max_tokens <= 0: | |
return '', '' | |
# Initialize the header | |
header = { | |
'content-type': 'application/json', | |
} | |
# Common parameters processing | |
gen_params['max_tokens'] = max_tokens | |
if 'stop_words' in gen_params: | |
gen_params['stop'] = gen_params.pop('stop_words') | |
if 'repetition_penalty' in gen_params: | |
gen_params['frequency_penalty'] = gen_params.pop( | |
'repetition_penalty') | |
# Model-specific processing | |
data = {} | |
if model_type.lower().startswith('sense'): | |
gen_params.pop('skip_special_tokens', None) | |
gen_params.pop('session_id', None) | |
data = { | |
'model': model_type, | |
'messages': messages, | |
'n': 1, | |
**gen_params | |
} | |
if json_mode: | |
data['response_format'] = {'type': 'json_object'} | |
else: | |
raise NotImplementedError( | |
f'Model type {model_type} is not supported') | |
return header, data | |
def tokenize(self, prompt: str) -> list: | |
"""Tokenize the input prompt. | |
Args: | |
prompt (str): Input string. | |
Returns: | |
list: token ids | |
""" | |
import tiktoken | |
self.tiktoken = tiktoken | |
enc = self.tiktoken.encoding_for_model('gpt-4o') | |
return enc.encode(prompt) | |