jmercat's picture
Removed history to avoid any unverified information being released
5769ee4
raw
history blame
21.8 kB
import inspect
import math
import warnings
from abc import ABC, abstractmethod
import torch
from torch import Tensor
class AbstractMonteCarloRiskEstimator(ABC):
"""Abstract class for Monte Carlo estimation of risk objectives"""
@abstractmethod
def __call__(self, risk_level: Tensor, cost: Tensor) -> Tensor:
"""Computes and returns the risk objective estimated on the cost tensor
Args:
risk_level: (batch_size,) tensor of risk-level at which the risk objective is computed
cost: (batch_size, n_samples) tensor of cost samples
Returns:
risk tensor of size (batch_size,)
"""
class EntropicRiskEstimator(AbstractMonteCarloRiskEstimator):
"""Monte Carlo estimator for the entropic risk objective.
This estimator computes the entropic risk as 1/risk_level * log( mean( exp(risk_level * cost), 1))
However, this is unstable.
When risk_level is large, the logsumexp trick is used.
When risk_level is small, it computes entropic_risk for small values of risk_level as the second order Taylor expansion instead.
Args:
eps: Risk-level threshold to switch between logsumexp and Taylor expansion. Defaults to 1e-4.
"""
def __init__(self, eps: float = 1e-4) -> None:
self.eps = eps
def __call__(self, risk_level: Tensor, cost: Tensor, weights: Tensor) -> Tensor:
"""Computes and returns the entropic risk estimated on the cost tensor
Args:
risk_level: (batch_size, n_agents,) tensor of risk-level at which the risk objective is computed
cost: (batch_size, n_agents, n_samples) cost tensor
weights: (batch_size, n_agents, n_samples) tensor of weights for the cost samples
Returns:
entropic risk tensor of size (batch_size,)
"""
weights = weights / weights.sum(dim=-1, keepdim=True)
batch_size, n_agents, n_samples = cost.shape
entropic_risk_cost_large_sigma = (
((risk_level.view(batch_size, n_agents, 1) * cost).exp() * weights)
.sum(-1)
.log()
) / risk_level
mean = (cost * weights).sum(dim=-1)
var = (cost**2 * weights).sum(dim=-1) - mean**2
var, mean = torch.var_mean(cost, -1)
entropic_risk_cost_small_sigma = mean + 0.5 * risk_level * var
return torch.where(
torch.abs(risk_level) > self.eps,
entropic_risk_cost_large_sigma,
entropic_risk_cost_small_sigma,
)
class CVaREstimator(AbstractMonteCarloRiskEstimator):
"""Monte Carlo estimator for the conditional value-at-risk objective.
This estimator is proposed in the following references, and shown to be consistent.
- Hong et al. (2014), "Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review"
- Traindade et al. (2007), "Financial prediction with constrained tail risk"
When risk_level is larger than 1 - eps, it falls back to the max operator
Args:
Args:
eps: Risk-level threshold to switch between CVaR and Max. Defaults to 1e-4.
"""
def __init__(self, eps: float = 1e-4) -> None:
self.eps = eps
def __call__(self, risk_level: Tensor, cost: Tensor, weights: Tensor) -> Tensor:
"""Computes and returns the conditional value-at-risk estimated on the cost tensor
Args:
risk_level: (batch_size, n_agents) tensor of risk-level in [0, 1] at which the CVaR risk is computed
cost: (batch_size, n_agents, n_samples) cost tensor
weights: (batch_size, n_agents, n_samples) tensor of weights for the cost samples
Returns:
conditional value-at-risk tensor of size (batch_size, n_agents)
"""
assert risk_level.shape[0] == cost.shape[0]
assert risk_level.shape[1] == cost.shape[1]
if weights is None:
weights = torch.ones_like(cost) / cost.shape[-1]
else:
weights = weights / weights.sum(dim=-1, keepdim=True)
if not (torch.all(0.0 <= risk_level) and torch.all(risk_level <= 1.0)):
warnings.warn(
"risk_level is defined only between 0.0 and 1.0 for CVaR. Exceeded values will be clamped."
)
risk_level = torch.clamp(risk_level, min=0.0, max=1.0)
cvar_risk_high = cost.max(dim=-1).values
sorted_indices = torch.argsort(cost, dim=-1)
# cost_sorted = cost.sort(dim=-1, descending=False).values
cost_sorted = torch.gather(cost, -1, sorted_indices)
weights_sorted = torch.gather(weights, -1, sorted_indices)
idx_to_choose = torch.argmax(
(weights_sorted.cumsum(dim=-1) >= risk_level.unsqueeze(-1)).float(), -1
)
value_at_risk_mc = cost_sorted.gather(-1, idx_to_choose.unsqueeze(-1)).squeeze(
-1
)
# weights_at_risk_mc = 1 - weights_sorted.cumsum(-1).gather(
# -1, idx_to_choose.unsqueeze(-1)
# ).squeeze(-1)
# cvar_risk_mc = value_at_risk_mc + (
# (torch.relu(cost - value_at_risk_mc.unsqueeze(-1)) * weights).sum(dim=-1)
# / weights_at_risk_mc
# )
# cvar = torch.where(weights_at_risk_mc < self.eps, cvar_risk_high, cvar_risk_mc)
cvar_risk_mc = value_at_risk_mc + 1 / (1 - risk_level) * (
(torch.relu(cost - value_at_risk_mc.unsqueeze(-1)) * weights).sum(dim=-1)
)
cvar = torch.where(risk_level > 1 - self.eps, cvar_risk_high, cvar_risk_mc)
return cvar
def get_risk_estimator(estimator_params: dict) -> AbstractMonteCarloRiskEstimator:
"""Function that returns the Monte Carlo risk estimator hat matches the given parameters.
Tries to give a comprehensive feedback if the parameters are not recognized and raise an error.
Args:
Risk estimator should be one of the following types (with different parameter values as desired) :
{"type": "entropic", "eps": 1e-4},
{"type": "cvar", "eps": 1e-4}
Raises:
RuntimeError: If the given parameter dictionary does not match one of the expected formats, raise a comprehensive error.
Returns:
A risk estimator matching the given parameters.
"""
known_types = ["entropic", "cvar"]
try:
if estimator_params["type"].lower() == "entropic":
expected_params = inspect.getfullargspec(EntropicRiskEstimator)[0][1:]
return EntropicRiskEstimator(estimator_params["eps"])
elif estimator_params["type"].lower() == "cvar":
expected_params = inspect.getfullargspec(CVaREstimator)[0][1:]
return CVaREstimator(estimator_params["eps"])
else:
raise RuntimeError(
f"Risk estimator '{estimator_params['type']}' is unknown. It should be one of {known_types}."
)
except KeyError:
if "type" in estimator_params:
raise RuntimeError(
f"""The estimator '{estimator_params['type']}' is known but the given parameters
{estimator_params} do not match the expected parameters {expected_params}."""
)
else:
raise RuntimeError(
f"""The given estimator parameters {estimator_params} do not define the estimator
type in the field 'type'. Please add a field 'type' and set it to one of the
handeled types: {known_types}."""
)
class AbstractRiskLevelSampler(ABC):
"""Abstract class for a risk-level sampler for training and evaluating risk-biased predictors"""
@abstractmethod
def sample(self, batch_size: int, device: torch.device) -> Tensor:
"""Returns a tensor of size batch_size with sampled risk-level values
Args:
batch_size: number of elements in the out tensor
device: device of the output tensor
Returns:
A tensor of shape(batch_size,) filled with sampled risk values
"""
@abstractmethod
def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
"""Returns a tensor of size batch_size with high values of risk.
Args:
batch_size: number of elements in the out tensor
device: device of the output tensor
Returns:
A tensor of shape (batchc_size,) filled with the highest possible risk-level
"""
class UniformRiskLevelSampler(AbstractRiskLevelSampler):
"""Risk-level sampler with a uniform distribution
Args:
min: minimum risk-level
max: maximum risk-level
"""
def __init__(self, min: int, max: int) -> None:
self.min = min
self.max = max
def sample(self, batch_size: int, device: torch.device) -> Tensor:
return torch.rand(batch_size, device=device) * (self.max - self.min) + self.min
def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
return torch.ones(batch_size, device=device) * self.max
class NormalRiskLevelSampler(AbstractRiskLevelSampler):
"""Risk-level sampler with a normal distribution
Args:
mean: average risk-level
sigma: standard deviation of the sampler
"""
def __init__(self, mean: int, sigma: int) -> None:
self.mean = mean
self.sigma = sigma
def sample(self, batch_size: int, device: torch.device) -> Tensor:
return torch.randn(batch_size, device=device) * self.sigma + self.mean
def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
return torch.ones(batch_size, device=device) * self.sigma * 3
class BernoulliRiskLevelSampler(AbstractRiskLevelSampler):
"""Risk-level sampler with a scaled Bernoulli distribution
Args:
min: minimum risk-level
max: maximum risk-level
p: Bernoulli parameter
"""
def __init__(self, min: int, max: int, p: int) -> None:
self.min = min
self.max = max
self.p = p
def sample(self, batch_size: int, device: torch.device) -> Tensor:
return (
torch.bernoulli(torch.ones(batch_size, device=device) * self.p)
* (self.max - self.min)
+ self.min
)
def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
return torch.ones(batch_size, device=device) * self.max
class BetaRiskLevelSampler(AbstractRiskLevelSampler):
"""Risk-level sampler with a scaled Beta distribution
Distribution properties:
mean = alpha*(max-min)/(alpha + beta) + min
mode = (alpha-1)*(max-min)/(alpha + beta - 2) + min
variance = alpha*beta*(max-min)**2/((alpha+beta)**2*(alpha+beta+1))
Args:
min: minimum risk-level
max: maximum risk-level
alpha: First distribution parameter
beta: Second distribution parameter
"""
def __init__(self, min: int, max: int, alpha: float, beta: float) -> None:
self.min = min
self.max = max
self._distribution = torch.distributions.Beta(
torch.tensor([alpha], dtype=torch.float32),
torch.tensor([beta], dtype=torch.float32),
)
@property
def alpha(self):
return self._distribution.concentration1.item()
@alpha.setter
def alpha(self, alpha: float):
self._distribution = torch.distributions.Beta(
torch.tensor([alpha], dtype=torch.float32),
torch.tensor([self.beta], dtype=torch.float32),
)
@property
def beta(self):
return self._distribution.concentration0.item()
@beta.setter
def beta(self, beta: float):
self._distribution = torch.distributions.Beta(
torch.tensor([self.alpha], dtype=torch.float32),
torch.tensor([beta], dtype=torch.float32),
)
def sample(self, batch_size: int, device: torch.device) -> Tensor:
return (
self._distribution.sample((batch_size,)).to(device) * (self.max - self.min)
+ self.min
).view(batch_size)
def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
return torch.ones(batch_size, device=device) * self.max
class Chi2RiskLevelSampler(AbstractRiskLevelSampler):
"""Risk-level sampler with a scaled chi2 distribution
Distribution properties:
mean = k*scale + min
mode = max(k-2, 0)*scale + min
variance = 2*k*scale**2
Args:
min: minimum risk-level
scale: scaling factor for the risk-level
k: Chi2 parameter: degrees of freedom of the distribution
"""
def __init__(self, min: int, scale: float, k: int) -> None:
self.min = min
self.scale = scale
self._distribution = torch.distributions.Chi2(
torch.tensor([k], dtype=torch.float32)
)
@property
def k(self):
return self._distribution.df.item()
@k.setter
def k(self, k: int):
self._distribution = torch.distributions.Chi2(
torch.tensor([k], dtype=torch.float32)
)
def sample(self, batch_size: int, device: torch.device) -> Tensor:
return (
self._distribution.sample((batch_size,)).to(device) * self.scale + self.min
).view(batch_size)
def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
std = self.scale * math.sqrt(2 * self.k)
return torch.ones(batch_size, device=device) * std * 3
class LogNormalRiskLevelSampler(AbstractRiskLevelSampler):
"""Risk-level sampler with a scaled Beta distribution
Distribution properties:
mean = exp(mu + sigma**2/2)*scale + min
mode = exp(mu - sigma**2)*scale + min
variance = (exp(sigma**2)-1)*exp(2*mu+sigma**2)*scale**2
Args:
min: minimum risk-level
scale: scaling factor for the risk-level
mu: First distribution parameter
sigma: maximum risk-level
"""
def __init__(self, min: int, scale: float, mu: float, sigma: float) -> None:
self.min = min
self.scale = scale
self._distribution = torch.distributions.LogNormal(
torch.tensor([mu], dtype=torch.float32),
torch.tensor([sigma], dtype=torch.float32),
)
@property
def mu(self):
return self._distribution.loc.item()
@mu.setter
def mu(self, mu: float):
self._distribution = torch.distributions.LogNormal(
torch.tensor([mu], dtype=torch.float32),
torch.tensor([self.sigma], dtype=torch.float32),
)
@property
def sigma(self) -> float:
return self._distribution.scale.item()
@sigma.setter
def sigma(self, sigma: float):
self._distribution = torch.distributions.LogNormal(
torch.tensor([self.mu], dtype=torch.float32),
torch.tensor([sigma], dtype=torch.float32),
)
def sample(self, batch_size: int, device: torch.device) -> Tensor:
return (
self._distribution.sample((batch_size,)).to(device) * self.scale + self.min
).view(batch_size)
def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
std = (
(torch.exp(self.sigma.square()) - 1).sqrt()
* torch.exp(self.mu + self.sigma.square() / 2)
* self.scale
)
return torch.ones(batch_size, device=device) * 3 * std
class LogUniformRiskLevelSampler(AbstractRiskLevelSampler):
"""Risk-level sampler with a reversed log-uniform distribution (increasing density function). Between min and max.
Distribution properties:
mean = (max - min)/ln((max+1)/(min+1)) - 1/scale
mode = None
variance = (((max+1)^2 - (min+1)^2)/(2*ln((max+1)/(min+1))) - ((max - min)/ln((max+1)/(min+1)))^2)
Args:
min: minimum risk-level
max: maximum risk-level
scale: scale to apply to the sampling before applying exponential,
the output is rescaled back to fit in bounds [min, max] (the higher the scale the less uniform the distribution)
"""
def __init__(self, min: float, max: float, scale: float) -> None:
assert min >= 0
assert max > min
assert scale > 0
self.min = min
self.max = max
self.scale = scale
def sample(self, batch_size: int, device: torch.device) -> Tensor:
scale = self.scale / (self.max - self.min)
max = self.max * scale
min = self.min * scale
return (
max
- (
(
torch.rand(batch_size, device=device)
* (math.log(max + 1) - math.log(min + 1))
+ math.log(min + 1)
).exp()
- 1
)
+ min
) / scale
def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
return torch.ones(batch_size, device=device) * self.max
def get_risk_level_sampler(distribution_params: dict) -> AbstractRiskLevelSampler:
"""Function that returns the risk level sampler that matches the given parameters.
Tries to give a comprehensive feedback if the parameters are not recognized and raise an error.
Args:
Risk distribution should be one of the following types (with different parameter values as desired) :
{"type": "uniform", "min": 0, "max": 1},
{"type": "normal", "mean": 0, "sigma": 1},
{"type": "bernoulli", "p": 0.5, "min": 0, "max": 1},
{"type": "beta", "alpha": 2, "beta": 5, "min": 0, "max": 1},
{"type": "chi2", "k": 3, "min": 0, "scale": 1},
{"type": "log-normal", "mu": 0, "sigma": 1, "min": 0, "scale": 1}
{"type": "log-uniform", "min": 0, "max": 1, "scale": 1}
Raises:
RuntimeError: If the given parameter dictionary does not match one of the expected formats, raise a comprehensive error.
Returns:
A risk level sampler matching the given parameters.
"""
known_types = [
"uniform",
"normal",
"bernoulli",
"beta",
"chi2",
"log-normal",
"log-uniform",
]
try:
if distribution_params["type"].lower() == "uniform":
expected_params = inspect.getfullargspec(UniformRiskLevelSampler)[0][1:]
return UniformRiskLevelSampler(
distribution_params["min"], distribution_params["max"]
)
elif distribution_params["type"].lower() == "normal":
expected_params = inspect.getfullargspec(NormalRiskLevelSampler)[0][1:]
return NormalRiskLevelSampler(
distribution_params["mean"], distribution_params["sigma"]
)
elif distribution_params["type"].lower() == "bernoulli":
expected_params = inspect.getfullargspec(BernoulliRiskLevelSampler)[0][1:]
return BernoulliRiskLevelSampler(
distribution_params["min"],
distribution_params["max"],
distribution_params["p"],
)
elif distribution_params["type"].lower() == "beta":
expected_params = inspect.getfullargspec(BetaRiskLevelSampler)[0][1:]
return BetaRiskLevelSampler(
distribution_params["min"],
distribution_params["max"],
distribution_params["alpha"],
distribution_params["beta"],
)
elif distribution_params["type"].lower() == "chi2":
expected_params = inspect.getfullargspec(Chi2RiskLevelSampler)[0][1:]
return Chi2RiskLevelSampler(
distribution_params["min"],
distribution_params["scale"],
distribution_params["k"],
)
elif distribution_params["type"].lower() == "log-normal":
expected_params = inspect.getfullargspec(LogNormalRiskLevelSampler)[0][1:]
return LogNormalRiskLevelSampler(
distribution_params["min"],
distribution_params["scale"],
distribution_params["mu"],
distribution_params["sigma"],
)
elif distribution_params["type"].lower() == "log-uniform":
expected_params = inspect.getfullargspec(LogUniformRiskLevelSampler)[0][1:]
return LogUniformRiskLevelSampler(
distribution_params["min"],
distribution_params["max"],
distribution_params["scale"],
)
else:
raise RuntimeError(
f"Distribution {distribution_params['type']} is unknown. It should be one of {known_types}."
)
except KeyError:
if "type" in distribution_params:
raise RuntimeError(
f"The distribution '{distribution_params['type']}' is known but the given parameters {distribution_params} do not match the expected parameters {expected_params}."
)
else:
raise RuntimeError(
f"The given distribution parameters {distribution_params} do not define the distribution type in the field 'type'. Please add a field 'type' and set it to one of the handeled types: {known_types}."
)
if __name__ == "__main__":
import matplotlib.pyplot as plt
sampler = get_risk_level_sampler(
{"type": "log-uniform", "min": 0, "max": 1, "scale": 10}
)
# sampler = get_risk_level_sampler({"type": "normal", "mean": 0, "sigma": 1})
a = sampler.sample(10000, "cpu").detach().numpy()
_ = plt.hist(a, bins="auto") # arguments are passed to np.histogram
plt.title("Histogram with 'auto' bins")
plt.show()