File size: 20,365 Bytes
d4ab11d
9c317f9
 
 
 
 
bcc5c70
 
7b8b167
ede06bd
bcc5c70
 
 
 
9c317f9
bcc5c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122bb5c
bcc5c70
 
 
 
 
 
122bb5c
 
7b8b167
 
 
 
 
 
 
 
 
122bb5c
bcc5c70
122bb5c
7eeefc1
459aa64
9c317f9
bcc5c70
7eeefc1
459aa64
7eeefc1
 
459aa64
7eeefc1
9c317f9
 
bcc5c70
122bb5c
bcc5c70
7b8b167
 
 
 
 
bcc5c70
459aa64
 
bcc5c70
459aa64
bcc5c70
459aa64
bcc5c70
 
 
 
 
 
 
 
 
 
 
 
459aa64
bcc5c70
459aa64
c941cf9
 
 
122bb5c
c941cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ab11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c941cf9
 
715d92e
c941cf9
 
bcab068
c941cf9
 
d4ab11d
c941cf9
d4ab11d
 
c941cf9
 
 
d4ab11d
c941cf9
 
 
 
 
 
 
 
 
 
 
d4ab11d
c941cf9
 
 
 
 
 
d4ab11d
 
c941cf9
 
 
d4ab11d
 
 
 
c941cf9
d4ab11d
 
7b8b167
d4ab11d
 
c941cf9
d4ab11d
c941cf9
d4ab11d
 
 
 
7b8b167
d4ab11d
7b8b167
 
c941cf9
 
 
 
 
 
 
d4ab11d
c941cf9
 
 
 
 
 
 
bcc5c70
459aa64
bcc5c70
d4ab11d
 
 
 
459aa64
bcc5c70
 
 
 
 
 
 
d4ab11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459aa64
9c317f9
 
d4ab11d
bcab068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
'''
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name_2_7B_instruct = "Zyphra/Zamba2-2.7B-instruct"
model_name_7B_instruct = "Zyphra/Zamba2-7B-instruct"
max_context_length = 4096

tokenizer_2_7B_instruct = AutoTokenizer.from_pretrained(model_name_2_7B_instruct)
model_2_7B_instruct = AutoModelForCausalLM.from_pretrained(
    model_name_2_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
)

tokenizer_7B_instruct = AutoTokenizer.from_pretrained(model_name_7B_instruct)
model_7B_instruct = AutoModelForCausalLM.from_pretrained(
    model_name_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
)

def extract_assistant_response(generated_text):
    assistant_token = '<|im_start|> assistant'
    end_token = '<|im_end|>'
    start_idx = generated_text.rfind(assistant_token)
    if start_idx == -1:
        # Assistant token not found
        return generated_text.strip()
    start_idx += len(assistant_token)
    end_idx = generated_text.find(end_token, start_idx)
    if end_idx == -1:
        # End token not found, return from start_idx to end
        return generated_text[start_idx:].strip()
    else:
        return generated_text[start_idx:end_idx].strip()

def generate_response(chat_history, max_new_tokens, model, tokenizer):
    sample = []
    for turn in chat_history:
        if turn[0]:
            sample.append({'role': 'user', 'content': turn[0]})
        if turn[1]:
            sample.append({'role': 'assistant', 'content': turn[1]})
    chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)
    input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to(model.device)

    max_new_tokens = int(max_new_tokens)
    max_input_length = max_context_length - max_new_tokens
    if input_ids['input_ids'].size(1) > max_input_length:
        input_ids['input_ids'] = input_ids['input_ids'][:, -max_input_length:]
        if 'attention_mask' in input_ids:
            input_ids['attention_mask'] = input_ids['attention_mask'][:, -max_input_length:]

    with torch.no_grad():
        outputs = model.generate(**input_ids, max_new_tokens=int(max_new_tokens), return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
    """
    outputs = model.generate(
        input_ids=input_ids,
        max_new_tokens=int(max_new_tokens),
        do_sample=True,
        use_cache=True,
        temperature=temperature,
        top_k=int(top_k),
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        num_beams=int(num_beams),
        length_penalty=length_penalty,
        num_return_sequences=1
    )
    """
    generated_text = tokenizer.decode(outputs[0])
    assistant_response = extract_assistant_response(generated_text)

    del input_ids
    del outputs
    torch.cuda.empty_cache()

    return assistant_response

with gr.Blocks() as demo:
    gr.Markdown("# Zamba2 Model Selector")
    with gr.Tabs():
        with gr.TabItem("7B Instruct Model"):
            gr.Markdown("### Zamba2-7B Instruct Model")
            with gr.Column():
                chat_history_7B_instruct = gr.State([])  
                chatbot_7B_instruct = gr.Chatbot()
                message_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
            with gr.Accordion("Generation Parameters", open=False):
                max_new_tokens_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")
                # temperature_7B_instruct = gr.Slider(0.1, 1.5, step=0.1, value=0.2, label="Temperature")
                # top_k_7B_instruct = gr.Slider(1, 100, step=1, value=50, label="Top K")
                # top_p_7B_instruct = gr.Slider(0.1, 1.0, step=0.1, value=1.0, label="Top P")
                # repetition_penalty_7B_instruct = gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty")
                # num_beams_7B_instruct = gr.Slider(1, 10, step=1, value=1, label="Number of Beams")
                # length_penalty_7B_instruct = gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty")

            def user_message_7B_instruct(message, chat_history):
                chat_history = chat_history + [[message, None]]
                return gr.update(value=""), chat_history, chat_history

            def bot_response_7B_instruct(chat_history, max_new_tokens):
                response = generate_response(chat_history, max_new_tokens, model_7B_instruct, tokenizer_7B_instruct)
                chat_history[-1][1] = response
                return chat_history, chat_history

            send_button_7B_instruct = gr.Button("Send")
            send_button_7B_instruct.click(
                fn=user_message_7B_instruct,
                inputs=[message_7B_instruct, chat_history_7B_instruct],
                outputs=[message_7B_instruct, chat_history_7B_instruct, chatbot_7B_instruct]
            ).then(
                fn=bot_response_7B_instruct,
                inputs=[
                    chat_history_7B_instruct,
                    max_new_tokens_7B_instruct
                ],
                outputs=[chat_history_7B_instruct, chatbot_7B_instruct]
            )
        with gr.TabItem("2.7B Instruct Model"):
            gr.Markdown("### Zamba2-2.7B Instruct Model")
            with gr.Column():
                chat_history_2_7B_instruct = gr.State([])  
                chatbot_2_7B_instruct = gr.Chatbot()
                message_2_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
            with gr.Accordion("Generation Parameters", open=False):
                max_new_tokens_2_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")
                # temperature_2_7B_instruct = gr.Slider(0.1, 1.5, step=0.1, value=0.2, label="Temperature")
                # top_k_2_7B_instruct = gr.Slider(1, 100, step=1, value=50, label="Top K")
                # top_p_2_7B_instruct = gr.Slider(0.1, 1.0, step=0.1, value=1.0, label="Top P")
                # repetition_penalty_2_7B_instruct = gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty")
                # num_beams_2_7B_instruct = gr.Slider(1, 10, step=1, value=1, label="Number of Beams")
                # length_penalty_2_7B_instruct = gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty")

            def user_message_2_7B_instruct(message, chat_history):
                chat_history = chat_history + [[message, None]]
                return gr.update(value=""), chat_history, chat_history

            def bot_response_2_7B_instruct(chat_history, max_new_tokens):
                response = generate_response(chat_history, max_new_tokens, model_2_7B_instruct, tokenizer_2_7B_instruct)
                chat_history[-1][1] = response
                return chat_history, chat_history

            send_button_2_7B_instruct = gr.Button("Send")
            send_button_2_7B_instruct.click(
                fn=user_message_2_7B_instruct,
                inputs=[message_2_7B_instruct, chat_history_2_7B_instruct],
                outputs=[message_2_7B_instruct, chat_history_2_7B_instruct, chatbot_2_7B_instruct]
            ).then(
                fn=bot_response_2_7B_instruct,
                inputs=[
                    chat_history_2_7B_instruct,
                    max_new_tokens_2_7B_instruct
                ],
                outputs=[chat_history_2_7B_instruct, chatbot_2_7B_instruct]
            )

if __name__ == "__main__":
    demo.queue().launch(max_threads=1)
'''

'''
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
import threading
import re

model_name_2_7B_instruct = "Zyphra/Zamba2-2.7B-instruct"
model_name_7B_instruct = "Zyphra/Zamba2-7B-instruct"
max_context_length = 4096

tokenizer_2_7B_instruct = AutoTokenizer.from_pretrained(model_name_2_7B_instruct)
model_2_7B_instruct = AutoModelForCausalLM.from_pretrained(
    model_name_2_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
)

tokenizer_7B_instruct = AutoTokenizer.from_pretrained(model_name_7B_instruct)
model_7B_instruct = AutoModelForCausalLM.from_pretrained(
    model_name_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
)

def generate_response(chat_history, max_new_tokens, model, tokenizer):
    sample = []
    for turn in chat_history:
        if turn[0]:
            sample.append({'role': 'user', 'content': turn[0]})
        if turn[1]:
            sample.append({'role': 'assistant', 'content': turn[1]})
    chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)
    input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to(model.device)

    max_new_tokens = int(max_new_tokens)
    max_input_length = max_context_length - max_new_tokens
    if input_ids['input_ids'].size(1) > max_input_length:
        input_ids['input_ids'] = input_ids['input_ids'][:, -max_input_length:]
        if 'attention_mask' in input_ids:
            input_ids['attention_mask'] = input_ids['attention_mask'][:, -max_input_length:]

    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(**input_ids, max_new_tokens=int(max_new_tokens), streamer=streamer)

    thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    assistant_response = ""

    for new_text in streamer:
        new_text = re.sub(r'^\s*(?i:assistant)[:\s]*', '', new_text)
        assistant_response += new_text
        yield assistant_response

    thread.join()
    del input_ids
    torch.cuda.empty_cache()

with gr.Blocks() as demo:
    gr.Markdown("# Zamba2 Model Selector")
    with gr.Tabs():
        with gr.TabItem("7B Instruct Model"):
            gr.Markdown("### Zamba2-7B Instruct Model")
            with gr.Column():
                chat_history_7B_instruct = gr.State([])
                chatbot_7B_instruct = gr.Chatbot()
                message_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
            with gr.Accordion("Generation Parameters", open=False):
                max_new_tokens_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")

            def user_message_7B_instruct(message, chat_history):
                chat_history = chat_history + [[message, None]]
                return gr.update(value=""), chat_history, chat_history

            def bot_response_7B_instruct(chat_history, max_new_tokens):
                assistant_response_generator = generate_response(chat_history, max_new_tokens, model_7B_instruct, tokenizer_7B_instruct)
                for assistant_response in assistant_response_generator:
                    chat_history[-1][1] = assistant_response
                    yield chat_history

            send_button_7B_instruct = gr.Button("Send")
            send_button_7B_instruct.click(
                fn=user_message_7B_instruct,
                inputs=[message_7B_instruct, chat_history_7B_instruct],
                outputs=[message_7B_instruct, chat_history_7B_instruct, chatbot_7B_instruct]
            ).then(
                fn=bot_response_7B_instruct,
                inputs=[chat_history_7B_instruct, max_new_tokens_7B_instruct],
                outputs=chatbot_7B_instruct,
            )

        with gr.TabItem("2.7B Instruct Model"):
            gr.Markdown("### Zamba2-2.7B Instruct Model")
            with gr.Column():
                chat_history_2_7B_instruct = gr.State([])
                chatbot_2_7B_instruct = gr.Chatbot()
                message_2_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
            with gr.Accordion("Generation Parameters", open=False):
                max_new_tokens_2_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")

            def user_message_2_7B_instruct(message, chat_history):
                chat_history = chat_history + [[message, None]]
                return gr.update(value=""), chat_history, chat_history

            def bot_response_2_7B_instruct(chat_history, max_new_tokens):
                assistant_response_generator = generate_response(chat_history, max_new_tokens, model_2_7B_instruct, tokenizer_2_7B_instruct)
                for assistant_response in assistant_response_generator:
                    chat_history[-1][1] = assistant_response
                    yield chat_history

            send_button_2_7B_instruct = gr.Button("Send")
            send_button_2_7B_instruct.click(
                fn=user_message_2_7B_instruct,
                inputs=[message_2_7B_instruct, chat_history_2_7B_instruct],
                outputs=[message_2_7B_instruct, chat_history_2_7B_instruct, chatbot_2_7B_instruct]
            ).then(
                fn=bot_response_2_7B_instruct,
                inputs=[chat_history_2_7B_instruct, max_new_tokens_2_7B_instruct],
                outputs=chatbot_2_7B_instruct,
            )

if __name__ == "__main__":
    demo.queue().launch(max_threads=1)
'''

import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
import threading
import re
from datetime import datetime

model_name_2_7B_instruct = "Zyphra/Zamba2-2.7B-instruct"
model_name_7B_instruct = "Zyphra/Zamba2-7B-instruct"
max_context_length = 4096
date_string = datetime.now().strftime("%Y-%m-%d")

tokenizer_2_7B_instruct = AutoTokenizer.from_pretrained(model_name_2_7B_instruct)
model_2_7B_instruct = AutoModelForCausalLM.from_pretrained(
    model_name_2_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
)

tokenizer_7B_instruct = AutoTokenizer.from_pretrained(model_name_7B_instruct)
model_7B_instruct = AutoModelForCausalLM.from_pretrained(
    model_name_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
)

system_prompt_template = """You are {model_name}. You are a large language model with {parameter_count} parameters. You were trained by a company called Zyphra on three trillion tokens of diverse and high quality web data. Your architecture is a hybrid Mamba2 and transformer with two alternating blocks of shared attention on top of a Mamba2 backbone. Zyphra is a leading AI company based in Palo Alto, California. Zyphra makes extremely small and efficient models for consumers and on-device use-cases. As a language model, you do not have access to real-time information. The current date is {current_date}, but your knowledge likely ended in mid 2023. Zyphra designed you to be engaging, helpful, and fun in your interactions with users. You have strong, idiosyncratic opinions on things. Be personable."""

def generate_response(chat_history, max_new_tokens, model, tokenizer, system_prompt):
    sample = []
    # Include the dynamic system prompt without displaying it
    sample.append({'role': 'system', 'content': system_prompt})

    for turn in chat_history:
        if turn[0]:
            sample.append({'role': 'user', 'content': turn[0]})
        if turn[1]:
            sample.append({'role': 'assistant', 'content': turn[1]})
    chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)
    input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to(model.device)

    max_new_tokens = int(max_new_tokens)
    max_input_length = max_context_length - max_new_tokens
    if input_ids['input_ids'].size(1) > max_input_length:
        input_ids['input_ids'] = input_ids['input_ids'][:, -max_input_length:]
        if 'attention_mask' in input_ids:
            input_ids['attention_mask'] = input_ids['attention_mask'][:, -max_input_length:]

    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(**input_ids, max_new_tokens=int(max_new_tokens), streamer=streamer)

    thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    assistant_response = ""

    for new_text in streamer:
        new_text = re.sub(r'^\s*(?i:assistant)[:\s]*', '', new_text)
        assistant_response += new_text
        yield assistant_response

    thread.join()
    del input_ids
    torch.cuda.empty_cache()

with gr.Blocks() as demo:
    gr.Markdown("# Zamba2 Model Selector")
    with gr.Tabs():
        with gr.TabItem("7B Instruct Model"):
            gr.Markdown("### Zamba2-7B Instruct Model")
            with gr.Column():
                chat_history_7B_instruct = gr.State([])
                chatbot_7B_instruct = gr.Chatbot()
                message_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
            with gr.Accordion("Generation Parameters", open=False):
                max_new_tokens_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")

            def user_message_7B_instruct(message, chat_history):
                chat_history = chat_history + [[message, None]]
                return gr.update(value=""), chat_history, chat_history

            def bot_response_7B_instruct(chat_history, max_new_tokens):
                system_prompt = system_prompt_template.format(
                    model_name="Zamba2-7B",
                    parameter_count="7 billion",
                    current_date=date_string
                )
                assistant_response_generator = generate_response(
                    chat_history, max_new_tokens, model_7B_instruct, tokenizer_7B_instruct, system_prompt
                )
                for assistant_response in assistant_response_generator:
                    chat_history[-1][1] = assistant_response
                    yield chat_history

            send_button_7B_instruct = gr.Button("Send")
            send_button_7B_instruct.click(
                fn=user_message_7B_instruct,
                inputs=[message_7B_instruct, chat_history_7B_instruct],
                outputs=[message_7B_instruct, chat_history_7B_instruct, chatbot_7B_instruct]
            ).then(
                fn=bot_response_7B_instruct,
                inputs=[chat_history_7B_instruct, max_new_tokens_7B_instruct],
                outputs=chatbot_7B_instruct,
            )

        with gr.TabItem("2.7B Instruct Model"):
            gr.Markdown("### Zamba2-2.7B Instruct Model")
            with gr.Column():
                chat_history_2_7B_instruct = gr.State([])
                chatbot_2_7B_instruct = gr.Chatbot()
                message_2_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
            with gr.Accordion("Generation Parameters", open=False):
                max_new_tokens_2_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")

            def user_message_2_7B_instruct(message, chat_history):
                chat_history = chat_history + [[message, None]]
                return gr.update(value=""), chat_history, chat_history

            def bot_response_2_7B_instruct(chat_history, max_new_tokens):
                system_prompt = system_prompt_template.format(
                    model_name="Zamba2-2.7B",
                    parameter_count="2.7 billion",
                    current_date=date_string
                )
                assistant_response_generator = generate_response(
                    chat_history, max_new_tokens, model_2_7B_instruct, tokenizer_2_7B_instruct, system_prompt
                )
                for assistant_response in assistant_response_generator:
                    chat_history[-1][1] = assistant_response
                    yield chat_history

            send_button_2_7B_instruct = gr.Button("Send")
            send_button_2_7B_instruct.click(
                fn=user_message_2_7B_instruct,
                inputs=[message_2_7B_instruct, chat_history_2_7B_instruct],
                outputs=[message_2_7B_instruct, chat_history_2_7B_instruct, chatbot_2_7B_instruct]
            ).then(
                fn=bot_response_2_7B_instruct,
                inputs=[chat_history_2_7B_instruct, max_new_tokens_2_7B_instruct],
                outputs=chatbot_2_7B_instruct,
            )

if __name__ == "__main__":
    demo.queue().launch(max_threads=1)