Spaces:
Sleeping
Sleeping
Support JSON output
#2
by
NBoukachab
- opened
- app.py +90 -16
- config.py +2 -0
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
|
|
|
3 |
import os
|
4 |
from pathlib import Path
|
5 |
-
import gradio as gr
|
6 |
-
from PIL import Image, ImageDraw
|
7 |
|
|
|
|
|
8 |
from doc_ufcn import models
|
9 |
from doc_ufcn.main import DocUFCN
|
|
|
|
|
10 |
from config import parse_configurations
|
11 |
|
12 |
# Load the config
|
@@ -44,7 +47,11 @@ def query_image(image):
|
|
44 |
Draws the predicted polygons with the color provided by the model on an image
|
45 |
|
46 |
:param image: An image to predict
|
47 |
-
:return: Image, an image with the predictions
|
|
|
|
|
|
|
|
|
48 |
"""
|
49 |
|
50 |
# Make a prediction with the model
|
@@ -58,29 +65,96 @@ def query_image(image):
|
|
58 |
# Make a copy of the image to keep the source and also to be able to use Pillow's blend method
|
59 |
img2 = image.copy()
|
60 |
|
|
|
|
|
|
|
61 |
# Create the polygons on the copy of the image for each class with the corresponding color
|
62 |
# We do not draw polygons of the background channel (channel 0)
|
63 |
for channel in range(1, len(classes)):
|
64 |
-
for polygon in detected_polygons[channel]:
|
65 |
# Draw the polygons on the image copy.
|
66 |
# Loop through the class_colors list (channel 1 has color 0)
|
67 |
ImageDraw.Draw(img2).polygon(
|
68 |
polygon["polygon"], fill=classes_colors[channel - 1]
|
69 |
)
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# Launch the application
|
86 |
process_image.launch()
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
|
3 |
+
import json
|
4 |
import os
|
5 |
from pathlib import Path
|
|
|
|
|
6 |
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
from doc_ufcn import models
|
10 |
from doc_ufcn.main import DocUFCN
|
11 |
+
from PIL import Image, ImageDraw
|
12 |
+
|
13 |
from config import parse_configurations
|
14 |
|
15 |
# Load the config
|
|
|
47 |
Draws the predicted polygons with the color provided by the model on an image
|
48 |
|
49 |
:param image: An image to predict
|
50 |
+
:return: Image and dict, an image with the predictions and a
|
51 |
+
dictionary mapping an object idx (starting from 1) to a dictionary describing the detected object:
|
52 |
+
- `polygon` key : list, the coordinates of the points of the polygon,
|
53 |
+
- `confidence` key : float, confidence of the model,
|
54 |
+
- `channel` key : str, the name of the predicted class.
|
55 |
"""
|
56 |
|
57 |
# Make a prediction with the model
|
|
|
65 |
# Make a copy of the image to keep the source and also to be able to use Pillow's blend method
|
66 |
img2 = image.copy()
|
67 |
|
68 |
+
# Initialize the dictionary which will display the json on the application
|
69 |
+
predict = []
|
70 |
+
|
71 |
# Create the polygons on the copy of the image for each class with the corresponding color
|
72 |
# We do not draw polygons of the background channel (channel 0)
|
73 |
for channel in range(1, len(classes)):
|
74 |
+
for i, polygon in enumerate(detected_polygons[channel]):
|
75 |
# Draw the polygons on the image copy.
|
76 |
# Loop through the class_colors list (channel 1 has color 0)
|
77 |
ImageDraw.Draw(img2).polygon(
|
78 |
polygon["polygon"], fill=classes_colors[channel - 1]
|
79 |
)
|
80 |
|
81 |
+
# Build the dictionary
|
82 |
+
# Add an index to dictionary keys to differentiate predictions of the same class
|
83 |
+
predict.append(
|
84 |
+
{
|
85 |
+
# The list of coordinates of the points of the polygon.
|
86 |
+
# Cast to list of np.int32 to make it JSON-serializable
|
87 |
+
"polygon": np.asarray(polygon["polygon"], dtype=np.int32).tolist(),
|
88 |
+
# Confidence that the model predicts the polygon in the right place
|
89 |
+
"confidence": polygon["confidence"],
|
90 |
+
# The channel on which the polygon is predicted
|
91 |
+
"channel": classes[channel],
|
92 |
+
}
|
93 |
+
)
|
94 |
+
|
95 |
+
# Return the blend of the images and the dictionary formatted in json
|
96 |
+
return Image.blend(image, img2, 0.5), json.dumps(predict, indent=20)
|
97 |
|
98 |
|
99 |
+
with gr.Blocks() as process_image:
|
100 |
+
|
101 |
+
# Create app title
|
102 |
+
gr.Markdown(f"# {config['title']}")
|
103 |
+
|
104 |
+
# Create app description
|
105 |
+
gr.Markdown(config["description"])
|
106 |
+
|
107 |
+
# Create a first row of blocks
|
108 |
+
with gr.Row():
|
109 |
+
|
110 |
+
# Create a column on the left
|
111 |
+
with gr.Column():
|
112 |
+
|
113 |
+
# Generates an image that can be uploaded by a user
|
114 |
+
image = gr.Image()
|
115 |
+
|
116 |
+
# Create a row under the image
|
117 |
+
with gr.Row():
|
118 |
+
|
119 |
+
# Generate a button to clear the inputs and outputs
|
120 |
+
clear_button = gr.Button("Clear", variant="secondary")
|
121 |
+
|
122 |
+
# Generates a button to submit the prediction
|
123 |
+
submit_button = gr.Button("Submit", variant="primary")
|
124 |
+
|
125 |
+
# Create a row under the buttons
|
126 |
+
with gr.Row():
|
127 |
+
|
128 |
+
# Generate example images that can be used as input image
|
129 |
+
examples = gr.Examples(inputs=image, examples=config["examples"])
|
130 |
+
|
131 |
+
# Create a column on the right
|
132 |
+
with gr.Column():
|
133 |
+
|
134 |
+
# Generates an output image that does not support upload
|
135 |
+
image_output = gr.Image(interactive=False)
|
136 |
+
|
137 |
+
# Create a row under the predicted image
|
138 |
+
with gr.Row():
|
139 |
+
|
140 |
+
# Create a column so that the JSON output doesn't take the full size of the page
|
141 |
+
with gr.Column():
|
142 |
+
|
143 |
+
# Create a collapsible region
|
144 |
+
with gr.Accordion("JSON"):
|
145 |
+
|
146 |
+
# Generates a json with the model predictions
|
147 |
+
json_output = gr.JSON()
|
148 |
+
|
149 |
+
# Clear button: set default values to inputs and output objects
|
150 |
+
clear_button.click(
|
151 |
+
lambda: (None, None, None),
|
152 |
+
inputs=[],
|
153 |
+
outputs=[image, image_output, json_output],
|
154 |
+
)
|
155 |
+
|
156 |
+
# Create the button to submit the prediction
|
157 |
+
submit_button.click(query_image, inputs=image, outputs=[image_output, json_output])
|
158 |
|
159 |
+
# Launch the application
|
160 |
process_image.launch()
|
config.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
|
3 |
from pathlib import Path
|
|
|
4 |
from teklia_toolbox.config import ConfigParser
|
5 |
|
|
|
6 |
def parse_configurations(config_path: Path):
|
7 |
"""
|
8 |
Parse multiple JSON configuration files into a single source
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
|
3 |
from pathlib import Path
|
4 |
+
|
5 |
from teklia_toolbox.config import ConfigParser
|
6 |
|
7 |
+
|
8 |
def parse_configurations(config_path: Path):
|
9 |
"""
|
10 |
Parse multiple JSON configuration files into a single source
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
doc-ufcn==0.1.9-rc2
|
2 |
-
teklia_toolbox==0.1.3
|
|
|
1 |
doc-ufcn==0.1.9-rc2
|
2 |
+
teklia_toolbox==0.1.3
|