Spaces:
Running
on
Zero
Running
on
Zero
##!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import os, random, sys | |
import numpy as np | |
import requests | |
import torch | |
import spaces | |
import gradio as gr | |
from PIL import Image | |
from huggingface_hub import hf_hub_download, snapshot_download | |
from scipy.ndimage import binary_dilation, binary_erosion | |
from transformers import (LlavaNextProcessor, LlavaNextForConditionalGeneration, | |
Qwen2VLForConditionalGeneration, Qwen2VLProcessor) | |
from segment_anything import SamPredictor, build_sam, SamAutomaticMaskGenerator | |
from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler | |
from diffusers.image_processor import VaeImageProcessor | |
from app.src.vlm_pipeline import ( | |
vlm_response_editing_type, | |
vlm_response_object_wait_for_edit, | |
vlm_response_mask, | |
vlm_response_prompt_after_apply_instruction | |
) | |
from app.src.brushedit_all_in_one_pipeline import BrushEdit_Pipeline | |
from app.utils.utils import load_grounding_dino_model | |
from app.src.vlm_template import vlms_template | |
from app.src.base_model_template import base_models_template | |
from app.src.aspect_ratio_template import aspect_ratios | |
from openai import OpenAI | |
# base_openai_url = "" | |
#### Description #### | |
logo = r""" | |
<center><img src='./assets/logo_brushedit.png' alt='BrushEdit logo' style="width:80px; margin-bottom:10px"></center> | |
""" | |
head = r""" | |
<div style="text-align: center;"> | |
<h1> BrushEdit: All-In-One Image Inpainting and Editing</h1> | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<a href='https://liyaowei-stu.github.io/project/BrushEdit/'><img src='https://img.shields.io/badge/Project_Page-BrushEdit-green' alt='Project Page'></a> | |
<a href='https://arxiv.org/abs/2412.10316'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a> | |
<a href='https://github.com/TencentARC/BrushEdit'><img src='https://img.shields.io/badge/Code-Github-orange'></a> | |
</div> | |
</br> | |
</div> | |
""" | |
descriptions = r""" | |
Official Gradio Demo for <a href='https://tencentarc.github.io/BrushNet/'><b>BrushEdit: All-In-One Image Inpainting and Editing</b></a><br> | |
🧙 BrushEdit enables precise, user-friendly instruction-based image editing via a inpainting model.<br> | |
""" | |
instructions = r""" | |
Currently, we support two modes: <b>fully automated command editing</b> and <b>interactive command editing</b>. | |
🛠️ <b>Fully automated instruction-based editing</b>: | |
<ul> | |
<li> ⭐️ <b>1.Choose Image: </b> Upload <img src="https://github.com/user-attachments/assets/f2dca1e6-31f9-4716-ae84-907f24415bac" alt="upload" style="display:inline; height:1em; vertical-align:middle;"> or select <img src="https://github.com/user-attachments/assets/de808f7d-c74a-44c7-9cbf-f0dbfc2c1abf" alt="example" style="display:inline; height:1em; vertical-align:middle;"> one image from Example. </li> | |
<li> ⭐️ <b>2.Input ⌨️ Instructions: </b> Input the instructions (supports addition, deletion, and modification), e.g. remove xxx .</li> | |
<li> ⭐️ <b>3.Run: </b> Click <b>💫 Run</b> button to automatic edit image.</li> | |
</ul> | |
🛠️ <b>Interactive instruction-based editing</b>: | |
<ul> | |
<li> ⭐️ <b>1.Choose Image: </b> Upload <img src="https://github.com/user-attachments/assets/f2dca1e6-31f9-4716-ae84-907f24415bac" alt="upload" style="display:inline; height:1em; vertical-align:middle;"> or select <img src="https://github.com/user-attachments/assets/de808f7d-c74a-44c7-9cbf-f0dbfc2c1abf" alt="example" style="display:inline; height:1em; vertical-align:middle;"> one image from Example. </li> | |
<li> ⭐️ <b>2.Finely Brushing: </b> Use a brush <img src="https://github.com/user-attachments/assets/c466c5cc-ac8f-4b4a-9bc5-04c4737fe1ef" alt="brush" style="display:inline; height:1em; vertical-align:middle;"> to outline the area you want to edit. And You can also use the eraser <img src="https://github.com/user-attachments/assets/b6370369-b080-4550-b0d0-830ff22d9068" alt="eraser" style="display:inline; height:1em; vertical-align:middle;"> to restore. </li> | |
<li> ⭐️ <b>3.Input ⌨️ Instructions: </b> Input the instructions. </li> | |
<li> ⭐️ <b>4.Run: </b> Click <b>💫 Run</b> button to automatic edit image. </li> | |
</ul> | |
<b> We strongly recommend using GPT-4o for reasoning. </b> After selecting the VLM model as gpt4-o, enter the API KEY and click the Submit and Verify button. If the output is success, you can use gpt4-o normally. Secondarily, we recommend using the Qwen2VL model. | |
<b> We recommend zooming out in your browser for a better viewing range and experience. </b> | |
<b> For more detailed feature descriptions, see the bottom. </b> | |
☕️ Have fun! 🎄 Wishing you a merry Christmas! | |
""" | |
tips = r""" | |
💡 <b>Some Tips</b>: | |
<ul> | |
<li> 🤠 After input the instructions, you can click the <b>Generate Mask</b> button. The mask generated by VLM will be displayed in the preview panel on the right side. </li> | |
<li> 🤠 After generating the mask or when you use the brush to draw the mask, you can perform operations such as <b>randomization</b>, <b>dilation</b>, <b>erosion</b>, and <b>movement</b>. </li> | |
<li> 🤠 After input the instructions, you can click the <b>Generate Target Prompt</b> button. The target prompt will be displayed in the text box, and you can modify it according to your ideas. </li> | |
</ul> | |
💡 <b>Detailed Features</b>: | |
<ul> | |
<li> 🎨 <b>Aspect Ratio</b>: Select the aspect ratio of the image. To prevent OOM, 1024px is the maximum resolution.</li> | |
<li> 🎨 <b>VLM Model</b>: Select the VLM model. We use preloaded models to save time. To use other VLM models, download them and uncomment the relevant lines in vlm_template.py from our GitHub repo. </li> | |
<li> 🎨 <b>Generate Mask</b>: According to the input instructions, generate a mask for the area that may need to be edited. </li> | |
<li> 🎨 <b>Square/Circle Mask</b>: Based on the existing mask, generate masks for squares and circles. (The coarse-grained mask provides more editing imagination.) </li> | |
<li> 🎨 <b>Invert Mask</b>: Invert the mask to generate a new mask. </li> | |
<li> 🎨 <b>Dilation/Erosion Mask</b>: Expand or shrink the mask to include or exclude more areas. </li> | |
<li> 🎨 <b>Move Mask</b>: Move the mask to a new position. </li> | |
<li> 🎨 <b>Generate Target Prompt</b>: Generate a target prompt based on the input instructions. </li> | |
<li> 🎨 <b>Target Prompt</b>: Description for masking area, manual input or modification can be made when the content generated by VLM does not meet expectations. </li> | |
<li> 🎨 <b>Blending</b>: Blending brushnet's output and the original input, ensuring the original image details in the unedited areas. (turn off is beeter when removing.) </li> | |
<li> 🎨 <b>Control length</b>: The intensity of editing and inpainting. </li> | |
</ul> | |
💡 <b>Advanced Features</b>: | |
<ul> | |
<li> 🎨 <b>Base Model</b>: We use preloaded models to save time. To use other VLM models, download them and uncomment the relevant lines in vlm_template.py from our GitHub repo. </li> | |
<li> 🎨 <b>Blending</b>: Blending brushnet's output and the original input, ensuring the original image details in the unedited areas. (turn off is beeter when removing.) </li> | |
<li> 🎨 <b>Control length</b>: The intensity of editing and inpainting. </li> | |
<li> 🎨 <b>Num samples</b>: The number of samples to generate. </li> | |
<li> 🎨 <b>Negative prompt</b>: The negative prompt for the classifier-free guidance. </li> | |
<li> 🎨 <b>Guidance scale</b>: The guidance scale for the classifier-free guidance. </li> | |
</ul> | |
""" | |
citation = r""" | |
If BrushEdit is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/BrushEdit' target='_blank'>Github Repo</a>. Thanks! | |
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/BrushEdit?style=social)](https://github.com/TencentARC/BrushEdit) | |
--- | |
📝 **Citation** | |
<br> | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@misc{li2024brushedit, | |
title={BrushEdit: All-In-One Image Inpainting and Editing}, | |
author={Yaowei Li and Yuxuan Bian and Xuan Ju and Zhaoyang Zhang and and Junhao Zhuang and Ying Shan and Yuexian Zou and Qiang Xu}, | |
year={2024}, | |
eprint={2412.10316}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV} | |
} | |
``` | |
📧 **Contact** | |
<br> | |
If you have any questions, please feel free to reach me out at <b>liyaowei@gmail.com</b>. | |
""" | |
# - - - - - examples - - - - - # | |
EXAMPLES = [ | |
[ | |
Image.open("./assets/frog/frog.jpeg").convert("RGBA"), | |
"add a magic hat on frog head.", | |
642087011, | |
"frog", | |
"frog", | |
True, | |
False, | |
"GPT4-o (Highly Recommended)" | |
], | |
[ | |
Image.open("./assets/chinese_girl/chinese_girl.png").convert("RGBA"), | |
"replace the background to ancient China.", | |
648464818, | |
"chinese_girl", | |
"chinese_girl", | |
True, | |
False, | |
"GPT4-o (Highly Recommended)" | |
], | |
[ | |
Image.open("./assets/angel_christmas/angel_christmas.png").convert("RGBA"), | |
"remove the deer.", | |
648464818, | |
"angel_christmas", | |
"angel_christmas", | |
False, | |
False, | |
"GPT4-o (Highly Recommended)" | |
], | |
[ | |
Image.open("./assets/sunflower_girl/sunflower_girl.png").convert("RGBA"), | |
"add a wreath on head.", | |
648464818, | |
"sunflower_girl", | |
"sunflower_girl", | |
True, | |
False, | |
"GPT4-o (Highly Recommended)" | |
], | |
[ | |
Image.open("./assets/girl_on_sun/girl_on_sun.png").convert("RGBA"), | |
"add a butterfly fairy.", | |
648464818, | |
"girl_on_sun", | |
"girl_on_sun", | |
True, | |
False, | |
"GPT4-o (Highly Recommended)" | |
], | |
[ | |
Image.open("./assets/spider_man_rm/spider_man.png").convert("RGBA"), | |
"remove the christmas hat.", | |
642087011, | |
"spider_man_rm", | |
"spider_man_rm", | |
False, | |
False, | |
"GPT4-o (Highly Recommended)" | |
], | |
[ | |
Image.open("./assets/anime_flower/anime_flower.png").convert("RGBA"), | |
"remove the flower.", | |
642087011, | |
"anime_flower", | |
"anime_flower", | |
False, | |
False, | |
"GPT4-o (Highly Recommended)" | |
], | |
[ | |
Image.open("./assets/chenduling/chengduling.jpg").convert("RGBA"), | |
"replace the clothes to a delicated floral skirt.", | |
648464818, | |
"chenduling", | |
"chenduling", | |
True, | |
False, | |
"GPT4-o (Highly Recommended)" | |
], | |
[ | |
Image.open("./assets/hedgehog_rp_bg/hedgehog.png").convert("RGBA"), | |
"make the hedgehog in Italy.", | |
648464818, | |
"hedgehog_rp_bg", | |
"hedgehog_rp_bg", | |
True, | |
False, | |
"GPT4-o (Highly Recommended)" | |
], | |
] | |
INPUT_IMAGE_PATH = { | |
"frog": "./assets/frog/frog.jpeg", | |
"chinese_girl": "./assets/chinese_girl/chinese_girl.png", | |
"angel_christmas": "./assets/angel_christmas/angel_christmas.png", | |
"sunflower_girl": "./assets/sunflower_girl/sunflower_girl.png", | |
"girl_on_sun": "./assets/girl_on_sun/girl_on_sun.png", | |
"spider_man_rm": "./assets/spider_man_rm/spider_man.png", | |
"anime_flower": "./assets/anime_flower/anime_flower.png", | |
"chenduling": "./assets/chenduling/chengduling.jpg", | |
"hedgehog_rp_bg": "./assets/hedgehog_rp_bg/hedgehog.png", | |
} | |
MASK_IMAGE_PATH = { | |
"frog": "./assets/frog/mask_f7b350de-6f2c-49e3-b535-995c486d78e7.png", | |
"chinese_girl": "./assets/chinese_girl/mask_54759648-0989-48e0-bc82-f20e28b5ec29.png", | |
"angel_christmas": "./assets/angel_christmas/mask_f15d9b45-c978-4e3d-9f5f-251e308560c3.png", | |
"sunflower_girl": "./assets/sunflower_girl/mask_99cc50b4-7dc4-4de5-8748-ec10772f0317.png", | |
"girl_on_sun": "./assets/girl_on_sun/mask_264eac8b-8b65-479c-9755-020a60880c37.png", | |
"spider_man_rm": "./assets/spider_man_rm/mask_a5d410e6-8e8d-432f-8144-defbc3e1eae9.png", | |
"anime_flower": "./assets/anime_flower/mask_37553172-9b38-4727-bf2e-37d7e2b93461.png", | |
"chenduling": "./assets/chenduling/mask_68e3ff6f-da07-4b37-91df-13d6eed7b997.png", | |
"hedgehog_rp_bg": "./assets/hedgehog_rp_bg/mask_db7f8bf8-8349-46d3-b14e-43d67fbe25d3.png", | |
} | |
MASKED_IMAGE_PATH = { | |
"frog": "./assets/frog/masked_image_f7b350de-6f2c-49e3-b535-995c486d78e7.png", | |
"chinese_girl": "./assets/chinese_girl/masked_image_54759648-0989-48e0-bc82-f20e28b5ec29.png", | |
"angel_christmas": "./assets/angel_christmas/masked_image_f15d9b45-c978-4e3d-9f5f-251e308560c3.png", | |
"sunflower_girl": "./assets/sunflower_girl/masked_image_99cc50b4-7dc4-4de5-8748-ec10772f0317.png", | |
"girl_on_sun": "./assets/girl_on_sun/masked_image_264eac8b-8b65-479c-9755-020a60880c37.png", | |
"spider_man_rm": "./assets/spider_man_rm/masked_image_a5d410e6-8e8d-432f-8144-defbc3e1eae9.png", | |
"anime_flower": "./assets/anime_flower/masked_image_37553172-9b38-4727-bf2e-37d7e2b93461.png", | |
"chenduling": "./assets/chenduling/masked_image_68e3ff6f-da07-4b37-91df-13d6eed7b997.png", | |
"hedgehog_rp_bg": "./assets/hedgehog_rp_bg/masked_image_db7f8bf8-8349-46d3-b14e-43d67fbe25d3.png", | |
} | |
OUTPUT_IMAGE_PATH = { | |
"frog": "./assets/frog/image_edit_f7b350de-6f2c-49e3-b535-995c486d78e7_1.png", | |
"chinese_girl": "./assets/chinese_girl/image_edit_54759648-0989-48e0-bc82-f20e28b5ec29_1.png", | |
"angel_christmas": "./assets/angel_christmas/image_edit_f15d9b45-c978-4e3d-9f5f-251e308560c3_0.png", | |
"sunflower_girl": "./assets/sunflower_girl/image_edit_99cc50b4-7dc4-4de5-8748-ec10772f0317_3.png", | |
"girl_on_sun": "./assets/girl_on_sun/image_edit_264eac8b-8b65-479c-9755-020a60880c37_0.png", | |
"spider_man_rm": "./assets/spider_man_rm/image_edit_a5d410e6-8e8d-432f-8144-defbc3e1eae9_0.png", | |
"anime_flower": "./assets/anime_flower/image_edit_37553172-9b38-4727-bf2e-37d7e2b93461_2.png", | |
"chenduling": "./assets/chenduling/image_edit_68e3ff6f-da07-4b37-91df-13d6eed7b997_0.png", | |
"hedgehog_rp_bg": "./assets/hedgehog_rp_bg/image_edit_db7f8bf8-8349-46d3-b14e-43d67fbe25d3_3.png", | |
} | |
# os.environ['GRADIO_TEMP_DIR'] = 'gradio_temp_dir' | |
# os.makedirs('gradio_temp_dir', exist_ok=True) | |
VLM_MODEL_NAMES = list(vlms_template.keys()) | |
DEFAULT_VLM_MODEL_NAME = "Qwen2-VL-7B-Instruct (Default)" | |
BASE_MODELS = list(base_models_template.keys()) | |
DEFAULT_BASE_MODEL = "realisticVision (Default)" | |
ASPECT_RATIO_LABELS = list(aspect_ratios) | |
DEFAULT_ASPECT_RATIO = ASPECT_RATIO_LABELS[0] | |
## init device | |
try: | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif sys.platform == "darwin" and torch.backends.mps.is_available(): | |
device = "mps" | |
else: | |
device = "cpu" | |
except: | |
device = "cpu" | |
# ## init torch dtype | |
# if torch.cuda.is_available() and torch.cuda.is_bf16_supported(): | |
# torch_dtype = torch.bfloat16 | |
# else: | |
# torch_dtype = torch.float16 | |
# if device == "mps": | |
# torch_dtype = torch.float16 | |
torch_dtype = torch.float16 | |
# download hf models | |
BrushEdit_path = "models/" | |
if not os.path.exists(BrushEdit_path): | |
BrushEdit_path = snapshot_download( | |
repo_id="TencentARC/BrushEdit", | |
local_dir=BrushEdit_path, | |
token=os.getenv("HF_TOKEN"), | |
) | |
## init default VLM | |
vlm_type, vlm_local_path, vlm_processor, vlm_model = vlms_template[DEFAULT_VLM_MODEL_NAME] | |
if vlm_processor != "" and vlm_model != "": | |
vlm_model.to(device) | |
else: | |
raise gr.Error("Please Download default VLM model "+ DEFAULT_VLM_MODEL_NAME +" first.") | |
## init base model | |
base_model_path = os.path.join(BrushEdit_path, "base_model/realisticVisionV60B1_v51VAE") | |
brushnet_path = os.path.join(BrushEdit_path, "brushnetX") | |
sam_path = os.path.join(BrushEdit_path, "sam/sam_vit_h_4b8939.pth") | |
groundingdino_path = os.path.join(BrushEdit_path, "grounding_dino/groundingdino_swint_ogc.pth") | |
# input brushnetX ckpt path | |
brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch_dtype) | |
pipe = StableDiffusionBrushNetPipeline.from_pretrained( | |
base_model_path, brushnet=brushnet, torch_dtype=torch_dtype, low_cpu_mem_usage=False | |
) | |
# speed up diffusion process with faster scheduler and memory optimization | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# remove following line if xformers is not installed or when using Torch 2.0. | |
# pipe.enable_xformers_memory_efficient_attention() | |
pipe.enable_model_cpu_offload() | |
## init SAM | |
sam = build_sam(checkpoint=sam_path) | |
sam.to(device=device) | |
sam_predictor = SamPredictor(sam) | |
sam_automask_generator = SamAutomaticMaskGenerator(sam) | |
## init groundingdino_model | |
config_file = 'app/utils/GroundingDINO_SwinT_OGC.py' | |
groundingdino_model = load_grounding_dino_model(config_file, groundingdino_path, device=device) | |
## Ordinary function | |
def crop_and_resize(image: Image.Image, | |
target_width: int, | |
target_height: int) -> Image.Image: | |
""" | |
Crops and resizes an image while preserving the aspect ratio. | |
Args: | |
image (Image.Image): Input PIL image to be cropped and resized. | |
target_width (int): Target width of the output image. | |
target_height (int): Target height of the output image. | |
Returns: | |
Image.Image: Cropped and resized image. | |
""" | |
# Original dimensions | |
original_width, original_height = image.size | |
original_aspect = original_width / original_height | |
target_aspect = target_width / target_height | |
# Calculate crop box to maintain aspect ratio | |
if original_aspect > target_aspect: | |
# Crop horizontally | |
new_width = int(original_height * target_aspect) | |
new_height = original_height | |
left = (original_width - new_width) / 2 | |
top = 0 | |
right = left + new_width | |
bottom = original_height | |
else: | |
# Crop vertically | |
new_width = original_width | |
new_height = int(original_width / target_aspect) | |
left = 0 | |
top = (original_height - new_height) / 2 | |
right = original_width | |
bottom = top + new_height | |
# Crop and resize | |
cropped_image = image.crop((left, top, right, bottom)) | |
resized_image = cropped_image.resize((target_width, target_height), Image.NEAREST) | |
return resized_image | |
## Ordinary function | |
def resize(image: Image.Image, | |
target_width: int, | |
target_height: int) -> Image.Image: | |
""" | |
Crops and resizes an image while preserving the aspect ratio. | |
Args: | |
image (Image.Image): Input PIL image to be cropped and resized. | |
target_width (int): Target width of the output image. | |
target_height (int): Target height of the output image. | |
Returns: | |
Image.Image: Cropped and resized image. | |
""" | |
# Original dimensions | |
resized_image = image.resize((target_width, target_height), Image.NEAREST) | |
return resized_image | |
def move_mask_func(mask, direction, units): | |
binary_mask = mask.squeeze()>0 | |
rows, cols = binary_mask.shape | |
moved_mask = np.zeros_like(binary_mask, dtype=bool) | |
if direction == 'down': | |
# move down | |
moved_mask[max(0, units):, :] = binary_mask[:rows - units, :] | |
elif direction == 'up': | |
# move up | |
moved_mask[:rows - units, :] = binary_mask[units:, :] | |
elif direction == 'right': | |
# move left | |
moved_mask[:, max(0, units):] = binary_mask[:, :cols - units] | |
elif direction == 'left': | |
# move right | |
moved_mask[:, :cols - units] = binary_mask[:, units:] | |
return moved_mask | |
def random_mask_func(mask, dilation_type='square', dilation_size=20): | |
# Randomly select the size of dilation | |
binary_mask = mask.squeeze()>0 | |
if dilation_type == 'square_dilation': | |
structure = np.ones((dilation_size, dilation_size), dtype=bool) | |
dilated_mask = binary_dilation(binary_mask, structure=structure) | |
elif dilation_type == 'square_erosion': | |
structure = np.ones((dilation_size, dilation_size), dtype=bool) | |
dilated_mask = binary_erosion(binary_mask, structure=structure) | |
elif dilation_type == 'bounding_box': | |
# find the most left top and left bottom point | |
rows, cols = np.where(binary_mask) | |
if len(rows) == 0 or len(cols) == 0: | |
return mask # return original mask if no valid points | |
min_row = np.min(rows) | |
max_row = np.max(rows) | |
min_col = np.min(cols) | |
max_col = np.max(cols) | |
# create a bounding box | |
dilated_mask = np.zeros_like(binary_mask, dtype=bool) | |
dilated_mask[min_row:max_row + 1, min_col:max_col + 1] = True | |
elif dilation_type == 'bounding_ellipse': | |
# find the most left top and left bottom point | |
rows, cols = np.where(binary_mask) | |
if len(rows) == 0 or len(cols) == 0: | |
return mask # return original mask if no valid points | |
min_row = np.min(rows) | |
max_row = np.max(rows) | |
min_col = np.min(cols) | |
max_col = np.max(cols) | |
# calculate the center and axis length of the ellipse | |
center = ((min_col + max_col) // 2, (min_row + max_row) // 2) | |
a = (max_col - min_col) // 2 # half long axis | |
b = (max_row - min_row) // 2 # half short axis | |
# create a bounding ellipse | |
y, x = np.ogrid[:mask.shape[0], :mask.shape[1]] | |
ellipse_mask = ((x - center[0])**2 / a**2 + (y - center[1])**2 / b**2) <= 1 | |
dilated_mask = np.zeros_like(binary_mask, dtype=bool) | |
dilated_mask[ellipse_mask] = True | |
else: | |
ValueError("dilation_type must be 'square' or 'ellipse'") | |
# use binary dilation | |
dilated_mask = np.uint8(dilated_mask[:,:,np.newaxis]) * 255 | |
return dilated_mask | |
## Gradio component function | |
def update_vlm_model(vlm_name): | |
global vlm_model, vlm_processor | |
if vlm_model is not None: | |
del vlm_model | |
torch.cuda.empty_cache() | |
vlm_type, vlm_local_path, vlm_processor, vlm_model = vlms_template[vlm_name] | |
## we recommend using preload models, otherwise it will take a long time to download the model. you can edit the code via vlm_template.py | |
if vlm_type == "llava-next": | |
if vlm_processor != "" and vlm_model != "": | |
vlm_model.to(device) | |
return vlm_model_dropdown | |
else: | |
if os.path.exists(vlm_local_path): | |
vlm_processor = LlavaNextProcessor.from_pretrained(vlm_local_path) | |
vlm_model = LlavaNextForConditionalGeneration.from_pretrained(vlm_local_path, torch_dtype="auto", device_map="auto") | |
else: | |
if vlm_name == "llava-v1.6-mistral-7b-hf (Preload)": | |
vlm_processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") | |
vlm_model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype="auto", device_map="auto") | |
elif vlm_name == "llama3-llava-next-8b-hf (Preload)": | |
vlm_processor = LlavaNextProcessor.from_pretrained("llava-hf/llama3-llava-next-8b-hf") | |
vlm_model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llama3-llava-next-8b-hf", torch_dtype="auto", device_map="auto") | |
elif vlm_name == "llava-v1.6-vicuna-13b-hf (Preload)": | |
vlm_processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-vicuna-13b-hf") | |
vlm_model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-vicuna-13b-hf", torch_dtype="auto", device_map="auto") | |
elif vlm_name == "llava-v1.6-34b-hf (Preload)": | |
vlm_processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-34b-hf") | |
vlm_model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-34b-hf", torch_dtype="auto", device_map="auto") | |
elif vlm_name == "llava-next-72b-hf (Preload)": | |
vlm_processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-next-72b-hf") | |
vlm_model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-next-72b-hf", torch_dtype="auto", device_map="auto") | |
elif vlm_type == "qwen2-vl": | |
if vlm_processor != "" and vlm_model != "": | |
vlm_model.to(device) | |
return vlm_model_dropdown | |
else: | |
if os.path.exists(vlm_local_path): | |
vlm_processor = Qwen2VLProcessor.from_pretrained(vlm_local_path) | |
vlm_model = Qwen2VLForConditionalGeneration.from_pretrained(vlm_local_path, torch_dtype="auto", device_map="auto") | |
else: | |
if vlm_name == "qwen2-vl-2b-instruct (Preload)": | |
vlm_processor = Qwen2VLProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
vlm_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto") | |
elif vlm_name == "qwen2-vl-7b-instruct (Preload)": | |
vlm_processor = Qwen2VLProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
vlm_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto") | |
elif vlm_name == "qwen2-vl-72b-instruct (Preload)": | |
vlm_processor = Qwen2VLProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct") | |
vlm_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-72B-Instruct", torch_dtype="auto", device_map="auto") | |
elif vlm_type == "openai": | |
pass | |
return "success" | |
def update_base_model(base_model_name): | |
global pipe | |
## we recommend using preload models, otherwise it will take a long time to download the model. you can edit the code via base_model_template.py | |
if pipe is not None: | |
del pipe | |
torch.cuda.empty_cache() | |
base_model_path, pipe = base_models_template[base_model_name] | |
if pipe != "": | |
pipe.to(device) | |
else: | |
if os.path.exists(base_model_path): | |
pipe = StableDiffusionBrushNetPipeline.from_pretrained( | |
base_model_path, brushnet=brushnet, torch_dtype=torch_dtype, low_cpu_mem_usage=False | |
) | |
# pipe.enable_xformers_memory_efficient_attention() | |
pipe.enable_model_cpu_offload() | |
else: | |
raise gr.Error(f"The base model {base_model_name} does not exist") | |
return "success" | |
def submit_GPT4o_KEY(GPT4o_KEY): | |
global vlm_model, vlm_processor | |
if vlm_model is not None: | |
del vlm_model | |
torch.cuda.empty_cache() | |
try: | |
vlm_model = OpenAI(api_key=GPT4o_KEY) | |
vlm_processor = "" | |
response = vlm_model.chat.completions.create( | |
model="gpt-4o-2024-08-06", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": "Say this is a test"} | |
] | |
) | |
response_str = response.choices[0].message.content | |
return "Success, " + response_str, "GPT4-o (Highly Recommended)" | |
except Exception as e: | |
return "Invalid GPT4o API Key", "GPT4-o (Highly Recommended)" | |
def process(input_image, | |
original_image, | |
original_mask, | |
prompt, | |
negative_prompt, | |
control_strength, | |
seed, | |
randomize_seed, | |
guidance_scale, | |
num_inference_steps, | |
num_samples, | |
blending, | |
category, | |
target_prompt, | |
resize_default, | |
aspect_ratio_name, | |
invert_mask_state): | |
if original_image is None: | |
if input_image is None: | |
raise gr.Error('Please upload the input image') | |
else: | |
image_pil = input_image["background"].convert("RGB") | |
original_image = np.array(image_pil) | |
if prompt is None or prompt == "": | |
if target_prompt is None or target_prompt == "": | |
raise gr.Error("Please input your instructions, e.g., remove the xxx") | |
alpha_mask = input_image["layers"][0].split()[3] | |
input_mask = np.asarray(alpha_mask) | |
output_w, output_h = aspect_ratios[aspect_ratio_name] | |
if output_w == "" or output_h == "": | |
output_h, output_w = original_image.shape[:2] | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
else: | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
pass | |
else: | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
if invert_mask_state: | |
original_mask = original_mask | |
else: | |
if input_mask.max() == 0: | |
original_mask = original_mask | |
else: | |
original_mask = input_mask | |
## inpainting directly if target_prompt is not None | |
if category is not None: | |
pass | |
elif target_prompt is not None and len(target_prompt) >= 1 and original_mask is not None: | |
pass | |
else: | |
try: | |
category = vlm_response_editing_type(vlm_processor, vlm_model, original_image, prompt, device) | |
except Exception as e: | |
raise gr.Error("Please select the correct VLM model and input the correct API Key first!") | |
if original_mask is not None: | |
original_mask = np.clip(original_mask, 0, 255).astype(np.uint8) | |
else: | |
try: | |
object_wait_for_edit = vlm_response_object_wait_for_edit( | |
vlm_processor, | |
vlm_model, | |
original_image, | |
category, | |
prompt, | |
device) | |
original_mask = vlm_response_mask(vlm_processor, | |
vlm_model, | |
category, | |
original_image, | |
prompt, | |
object_wait_for_edit, | |
sam, | |
sam_predictor, | |
sam_automask_generator, | |
groundingdino_model, | |
device) | |
except Exception as e: | |
raise gr.Error("Please select the correct VLM model and input the correct API Key first!") | |
if original_mask.ndim == 2: | |
original_mask = original_mask[:,:,None] | |
if target_prompt is not None and len(target_prompt) >= 1: | |
prompt_after_apply_instruction = target_prompt | |
else: | |
try: | |
prompt_after_apply_instruction = vlm_response_prompt_after_apply_instruction( | |
vlm_processor, | |
vlm_model, | |
original_image, | |
prompt, | |
device) | |
except Exception as e: | |
raise gr.Error("Please select the correct VLM model and input the correct API Key first!") | |
generator = torch.Generator(device).manual_seed(random.randint(0, 2147483647) if randomize_seed else seed) | |
with torch.autocast(device): | |
image, mask_image, mask_np, init_image_np = BrushEdit_Pipeline(pipe, | |
prompt_after_apply_instruction, | |
original_mask, | |
original_image, | |
generator, | |
num_inference_steps, | |
guidance_scale, | |
control_strength, | |
negative_prompt, | |
num_samples, | |
blending) | |
original_image = np.array(init_image_np) | |
masked_image = original_image * (1 - (mask_np>0)) | |
masked_image = masked_image.astype(np.uint8) | |
masked_image = Image.fromarray(masked_image) | |
# Save the images (optional) | |
# import uuid | |
# uuid = str(uuid.uuid4()) | |
# image[0].save(f"outputs/image_edit_{uuid}_0.png") | |
# image[1].save(f"outputs/image_edit_{uuid}_1.png") | |
# image[2].save(f"outputs/image_edit_{uuid}_2.png") | |
# image[3].save(f"outputs/image_edit_{uuid}_3.png") | |
# mask_image.save(f"outputs/mask_{uuid}.png") | |
# masked_image.save(f"outputs/masked_image_{uuid}.png") | |
# gr.Info(f"Target Prompt: {prompt_after_apply_instruction}", duration=16) | |
return image, [mask_image], [masked_image], prompt, '', False | |
def generate_target_prompt(input_image, | |
original_image, | |
prompt): | |
# load example image | |
if isinstance(original_image, str): | |
original_image = input_image | |
prompt_after_apply_instruction = vlm_response_prompt_after_apply_instruction( | |
vlm_processor, | |
vlm_model, | |
original_image, | |
prompt, | |
device) | |
return prompt_after_apply_instruction | |
def process_mask(input_image, | |
original_image, | |
prompt, | |
resize_default, | |
aspect_ratio_name): | |
if original_image is None: | |
raise gr.Error('Please upload the input image') | |
if prompt is None: | |
raise gr.Error("Please input your instructions, e.g., remove the xxx") | |
## load mask | |
alpha_mask = input_image["layers"][0].split()[3] | |
input_mask = np.array(alpha_mask) | |
# load example image | |
if isinstance(original_image, str): | |
original_image = input_image["background"] | |
if input_mask.max() == 0: | |
category = vlm_response_editing_type(vlm_processor, vlm_model, original_image, prompt, device) | |
object_wait_for_edit = vlm_response_object_wait_for_edit(vlm_processor, | |
vlm_model, | |
original_image, | |
category, | |
prompt, | |
device) | |
# original mask: h,w,1 [0, 255] | |
original_mask = vlm_response_mask( | |
vlm_processor, | |
vlm_model, | |
category, | |
original_image, | |
prompt, | |
object_wait_for_edit, | |
sam, | |
sam_predictor, | |
sam_automask_generator, | |
groundingdino_model, | |
device) | |
else: | |
original_mask = input_mask | |
category = None | |
## resize mask if needed | |
output_w, output_h = aspect_ratios[aspect_ratio_name] | |
if output_w == "" or output_h == "": | |
output_h, output_w = original_image.shape[:2] | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
else: | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
pass | |
else: | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
if original_mask.ndim == 2: | |
original_mask = original_mask[:,:,None] | |
mask_image = Image.fromarray(original_mask.squeeze().astype(np.uint8)).convert("RGB") | |
masked_image = original_image * (1 - (original_mask>0)) | |
masked_image = masked_image.astype(np.uint8) | |
masked_image = Image.fromarray(masked_image) | |
return [masked_image], [mask_image], original_mask.astype(np.uint8), category | |
def process_random_mask(input_image, | |
original_image, | |
original_mask, | |
resize_default, | |
aspect_ratio_name, | |
): | |
alpha_mask = input_image["layers"][0].split()[3] | |
input_mask = np.asarray(alpha_mask) | |
output_w, output_h = aspect_ratios[aspect_ratio_name] | |
if output_w == "" or output_h == "": | |
output_h, output_w = original_image.shape[:2] | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
else: | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
pass | |
else: | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
if input_mask.max() == 0: | |
original_mask = original_mask | |
else: | |
original_mask = input_mask | |
if original_mask is None: | |
raise gr.Error('Please generate mask first') | |
if original_mask.ndim == 2: | |
original_mask = original_mask[:,:,None] | |
dilation_type = np.random.choice(['bounding_box', 'bounding_ellipse']) | |
random_mask = random_mask_func(original_mask, dilation_type).squeeze() | |
mask_image = Image.fromarray(random_mask.astype(np.uint8)).convert("RGB") | |
masked_image = original_image * (1 - (random_mask[:,:,None]>0)) | |
masked_image = masked_image.astype(original_image.dtype) | |
masked_image = Image.fromarray(masked_image) | |
return [masked_image], [mask_image], random_mask[:,:,None].astype(np.uint8) | |
def process_dilation_mask(input_image, | |
original_image, | |
original_mask, | |
resize_default, | |
aspect_ratio_name, | |
dilation_size=20): | |
alpha_mask = input_image["layers"][0].split()[3] | |
input_mask = np.asarray(alpha_mask) | |
output_w, output_h = aspect_ratios[aspect_ratio_name] | |
if output_w == "" or output_h == "": | |
output_h, output_w = original_image.shape[:2] | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
else: | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
pass | |
else: | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
if input_mask.max() == 0: | |
original_mask = original_mask | |
else: | |
original_mask = input_mask | |
if original_mask is None: | |
raise gr.Error('Please generate mask first') | |
if original_mask.ndim == 2: | |
original_mask = original_mask[:,:,None] | |
dilation_type = np.random.choice(['square_dilation']) | |
random_mask = random_mask_func(original_mask, dilation_type, dilation_size).squeeze() | |
mask_image = Image.fromarray(random_mask.astype(np.uint8)).convert("RGB") | |
masked_image = original_image * (1 - (random_mask[:,:,None]>0)) | |
masked_image = masked_image.astype(original_image.dtype) | |
masked_image = Image.fromarray(masked_image) | |
return [masked_image], [mask_image], random_mask[:,:,None].astype(np.uint8) | |
def process_erosion_mask(input_image, | |
original_image, | |
original_mask, | |
resize_default, | |
aspect_ratio_name, | |
dilation_size=20): | |
alpha_mask = input_image["layers"][0].split()[3] | |
input_mask = np.asarray(alpha_mask) | |
output_w, output_h = aspect_ratios[aspect_ratio_name] | |
if output_w == "" or output_h == "": | |
output_h, output_w = original_image.shape[:2] | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
else: | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
pass | |
else: | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
if input_mask.max() == 0: | |
original_mask = original_mask | |
else: | |
original_mask = input_mask | |
if original_mask is None: | |
raise gr.Error('Please generate mask first') | |
if original_mask.ndim == 2: | |
original_mask = original_mask[:,:,None] | |
dilation_type = np.random.choice(['square_erosion']) | |
random_mask = random_mask_func(original_mask, dilation_type, dilation_size).squeeze() | |
mask_image = Image.fromarray(random_mask.astype(np.uint8)).convert("RGB") | |
masked_image = original_image * (1 - (random_mask[:,:,None]>0)) | |
masked_image = masked_image.astype(original_image.dtype) | |
masked_image = Image.fromarray(masked_image) | |
return [masked_image], [mask_image], random_mask[:,:,None].astype(np.uint8) | |
def move_mask_left(input_image, | |
original_image, | |
original_mask, | |
moving_pixels, | |
resize_default, | |
aspect_ratio_name): | |
alpha_mask = input_image["layers"][0].split()[3] | |
input_mask = np.asarray(alpha_mask) | |
output_w, output_h = aspect_ratios[aspect_ratio_name] | |
if output_w == "" or output_h == "": | |
output_h, output_w = original_image.shape[:2] | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
else: | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
pass | |
else: | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
if input_mask.max() == 0: | |
original_mask = original_mask | |
else: | |
original_mask = input_mask | |
if original_mask is None: | |
raise gr.Error('Please generate mask first') | |
if original_mask.ndim == 2: | |
original_mask = original_mask[:,:,None] | |
moved_mask = move_mask_func(original_mask, 'left', int(moving_pixels)).squeeze() | |
mask_image = Image.fromarray(((moved_mask>0).astype(np.uint8)*255)).convert("RGB") | |
masked_image = original_image * (1 - (moved_mask[:,:,None]>0)) | |
masked_image = masked_image.astype(original_image.dtype) | |
masked_image = Image.fromarray(masked_image) | |
if moved_mask.max() <= 1: | |
moved_mask = ((moved_mask * 255)[:,:,None]).astype(np.uint8) | |
original_mask = moved_mask | |
return [masked_image], [mask_image], original_mask.astype(np.uint8) | |
def move_mask_right(input_image, | |
original_image, | |
original_mask, | |
moving_pixels, | |
resize_default, | |
aspect_ratio_name): | |
alpha_mask = input_image["layers"][0].split()[3] | |
input_mask = np.asarray(alpha_mask) | |
output_w, output_h = aspect_ratios[aspect_ratio_name] | |
if output_w == "" or output_h == "": | |
output_h, output_w = original_image.shape[:2] | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
else: | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
pass | |
else: | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
if input_mask.max() == 0: | |
original_mask = original_mask | |
else: | |
original_mask = input_mask | |
if original_mask is None: | |
raise gr.Error('Please generate mask first') | |
if original_mask.ndim == 2: | |
original_mask = original_mask[:,:,None] | |
moved_mask = move_mask_func(original_mask, 'right', int(moving_pixels)).squeeze() | |
mask_image = Image.fromarray(((moved_mask>0).astype(np.uint8)*255)).convert("RGB") | |
masked_image = original_image * (1 - (moved_mask[:,:,None]>0)) | |
masked_image = masked_image.astype(original_image.dtype) | |
masked_image = Image.fromarray(masked_image) | |
if moved_mask.max() <= 1: | |
moved_mask = ((moved_mask * 255)[:,:,None]).astype(np.uint8) | |
original_mask = moved_mask | |
return [masked_image], [mask_image], original_mask.astype(np.uint8) | |
def move_mask_up(input_image, | |
original_image, | |
original_mask, | |
moving_pixels, | |
resize_default, | |
aspect_ratio_name): | |
alpha_mask = input_image["layers"][0].split()[3] | |
input_mask = np.asarray(alpha_mask) | |
output_w, output_h = aspect_ratios[aspect_ratio_name] | |
if output_w == "" or output_h == "": | |
output_h, output_w = original_image.shape[:2] | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
else: | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
pass | |
else: | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
if input_mask.max() == 0: | |
original_mask = original_mask | |
else: | |
original_mask = input_mask | |
if original_mask is None: | |
raise gr.Error('Please generate mask first') | |
if original_mask.ndim == 2: | |
original_mask = original_mask[:,:,None] | |
moved_mask = move_mask_func(original_mask, 'up', int(moving_pixels)).squeeze() | |
mask_image = Image.fromarray(((moved_mask>0).astype(np.uint8)*255)).convert("RGB") | |
masked_image = original_image * (1 - (moved_mask[:,:,None]>0)) | |
masked_image = masked_image.astype(original_image.dtype) | |
masked_image = Image.fromarray(masked_image) | |
if moved_mask.max() <= 1: | |
moved_mask = ((moved_mask * 255)[:,:,None]).astype(np.uint8) | |
original_mask = moved_mask | |
return [masked_image], [mask_image], original_mask.astype(np.uint8) | |
def move_mask_down(input_image, | |
original_image, | |
original_mask, | |
moving_pixels, | |
resize_default, | |
aspect_ratio_name): | |
alpha_mask = input_image["layers"][0].split()[3] | |
input_mask = np.asarray(alpha_mask) | |
output_w, output_h = aspect_ratios[aspect_ratio_name] | |
if output_w == "" or output_h == "": | |
output_h, output_w = original_image.shape[:2] | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
else: | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
pass | |
else: | |
if resize_default: | |
short_side = min(output_w, output_h) | |
scale_ratio = 640 / short_side | |
output_w = int(output_w * scale_ratio) | |
output_h = int(output_h * scale_ratio) | |
gr.Info(f"Output aspect ratio: {output_w}:{output_h}") | |
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h)) | |
original_image = np.array(original_image) | |
if input_mask is not None: | |
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h)) | |
input_mask = np.array(input_mask) | |
if original_mask is not None: | |
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h)) | |
original_mask = np.array(original_mask) | |
if input_mask.max() == 0: | |
original_mask = original_mask | |
else: | |
original_mask = input_mask | |
if original_mask is None: | |
raise gr.Error('Please generate mask first') | |
if original_mask.ndim == 2: | |
original_mask = original_mask[:,:,None] | |
moved_mask = move_mask_func(original_mask, 'down', int(moving_pixels)).squeeze() | |
mask_image = Image.fromarray(((moved_mask>0).astype(np.uint8)*255)).convert("RGB") | |
masked_image = original_image * (1 - (moved_mask[:,:,None]>0)) | |
masked_image = masked_image.astype(original_image.dtype) | |
masked_image = Image.fromarray(masked_image) | |
if moved_mask.max() <= 1: | |
moved_mask = ((moved_mask * 255)[:,:,None]).astype(np.uint8) | |
original_mask = moved_mask | |
return [masked_image], [mask_image], original_mask.astype(np.uint8) | |
def invert_mask(input_image, | |
original_image, | |
original_mask, | |
): | |
alpha_mask = input_image["layers"][0].split()[3] | |
input_mask = np.asarray(alpha_mask) | |
if input_mask.max() == 0: | |
original_mask = 1 - (original_mask>0).astype(np.uint8) | |
else: | |
original_mask = 1 - (input_mask>0).astype(np.uint8) | |
if original_mask is None: | |
raise gr.Error('Please generate mask first') | |
original_mask = original_mask.squeeze() | |
mask_image = Image.fromarray(original_mask*255).convert("RGB") | |
if original_mask.ndim == 2: | |
original_mask = original_mask[:,:,None] | |
if original_mask.max() <= 1: | |
original_mask = (original_mask * 255).astype(np.uint8) | |
masked_image = original_image * (1 - (original_mask>0)) | |
masked_image = masked_image.astype(original_image.dtype) | |
masked_image = Image.fromarray(masked_image) | |
return [masked_image], [mask_image], original_mask, True | |
def init_img(base, | |
init_type, | |
prompt, | |
aspect_ratio, | |
example_change_times | |
): | |
image_pil = base["background"].convert("RGB") | |
original_image = np.array(image_pil) | |
if max(original_image.shape[0], original_image.shape[1]) * 1.0 / min(original_image.shape[0], original_image.shape[1])>2.0: | |
raise gr.Error('image aspect ratio cannot be larger than 2.0') | |
if init_type in MASK_IMAGE_PATH.keys() and example_change_times < 2: | |
mask_gallery = [Image.open(MASK_IMAGE_PATH[init_type]).convert("L")] | |
masked_gallery = [Image.open(MASKED_IMAGE_PATH[init_type]).convert("RGB")] | |
result_gallery = [Image.open(OUTPUT_IMAGE_PATH[init_type]).convert("RGB")] | |
width, height = image_pil.size | |
image_processor = VaeImageProcessor(vae_scale_factor=pipe.vae_scale_factor, do_convert_rgb=True) | |
height_new, width_new = image_processor.get_default_height_width(image_pil, height, width) | |
image_pil = image_pil.resize((width_new, height_new)) | |
mask_gallery[0] = mask_gallery[0].resize((width_new, height_new)) | |
masked_gallery[0] = masked_gallery[0].resize((width_new, height_new)) | |
result_gallery[0] = result_gallery[0].resize((width_new, height_new)) | |
original_mask = np.array(mask_gallery[0]).astype(np.uint8)[:,:,None] # h,w,1 | |
return base, original_image, original_mask, prompt, mask_gallery, masked_gallery, result_gallery, "", "", "Custom resolution", False, False, example_change_times | |
else: | |
if aspect_ratio not in ASPECT_RATIO_LABELS: | |
aspect_ratio = "Custom resolution" | |
return base, original_image, None, "", None, None, None, "", "", aspect_ratio, True, False, 0 | |
def reset_func(input_image, | |
original_image, | |
original_mask, | |
prompt, | |
target_prompt, | |
): | |
input_image = None | |
original_image = None | |
original_mask = None | |
prompt = '' | |
mask_gallery = [] | |
masked_gallery = [] | |
result_gallery = [] | |
target_prompt = '' | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return input_image, original_image, original_mask, prompt, mask_gallery, masked_gallery, result_gallery, target_prompt, True, False | |
def update_example(example_type, | |
prompt, | |
example_change_times): | |
input_image = INPUT_IMAGE_PATH[example_type] | |
image_pil = Image.open(input_image).convert("RGB") | |
mask_gallery = [Image.open(MASK_IMAGE_PATH[example_type]).convert("L")] | |
masked_gallery = [Image.open(MASKED_IMAGE_PATH[example_type]).convert("RGB")] | |
result_gallery = [Image.open(OUTPUT_IMAGE_PATH[example_type]).convert("RGB")] | |
width, height = image_pil.size | |
image_processor = VaeImageProcessor(vae_scale_factor=pipe.vae_scale_factor, do_convert_rgb=True) | |
height_new, width_new = image_processor.get_default_height_width(image_pil, height, width) | |
image_pil = image_pil.resize((width_new, height_new)) | |
mask_gallery[0] = mask_gallery[0].resize((width_new, height_new)) | |
masked_gallery[0] = masked_gallery[0].resize((width_new, height_new)) | |
result_gallery[0] = result_gallery[0].resize((width_new, height_new)) | |
original_image = np.array(image_pil) | |
original_mask = np.array(mask_gallery[0]).astype(np.uint8)[:,:,None] # h,w,1 | |
aspect_ratio = "Custom resolution" | |
example_change_times += 1 | |
return input_image, prompt, original_image, original_mask, mask_gallery, masked_gallery, result_gallery, aspect_ratio, "", False, example_change_times | |
block = gr.Blocks( | |
theme=gr.themes.Soft( | |
radius_size=gr.themes.sizes.radius_none, | |
text_size=gr.themes.sizes.text_md | |
) | |
) | |
with block as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML(head) | |
gr.Markdown(descriptions) | |
with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"): | |
with gr.Row(equal_height=True): | |
gr.Markdown(instructions) | |
original_image = gr.State(value=None) | |
original_mask = gr.State(value=None) | |
category = gr.State(value=None) | |
status = gr.State(value=None) | |
invert_mask_state = gr.State(value=False) | |
example_change_times = gr.State(value=0) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.ImageEditor( | |
label="Input Image", | |
type="pil", | |
brush=gr.Brush(colors=["#FFFFFF"], default_size = 30, color_mode="fixed"), | |
layers = False, | |
interactive=True, | |
height=1024, | |
sources=["upload"], | |
) | |
prompt = gr.Textbox(label="⌨️ Instruction", placeholder="Please input your instruction.", value="",lines=1) | |
run_button = gr.Button("💫 Run") | |
vlm_model_dropdown = gr.Dropdown(label="VLM model", choices=VLM_MODEL_NAMES, value=DEFAULT_VLM_MODEL_NAME, interactive=True) | |
with gr.Group(): | |
with gr.Row(): | |
GPT4o_KEY = gr.Textbox(label="GPT4o API Key", placeholder="Please input your GPT4o API Key when use GPT4o VLM (highly recommended).", value="", lines=1) | |
GPT4o_KEY_submit = gr.Button("Submit and Verify") | |
aspect_ratio = gr.Dropdown(label="Output aspect ratio", choices=ASPECT_RATIO_LABELS, value=DEFAULT_ASPECT_RATIO) | |
resize_default = gr.Checkbox(label="Short edge resize to 640px", value=True) | |
with gr.Row(): | |
mask_button = gr.Button("Generate Mask") | |
random_mask_button = gr.Button("Square/Circle Mask ") | |
with gr.Row(): | |
generate_target_prompt_button = gr.Button("Generate Target Prompt") | |
target_prompt = gr.Text( | |
label="Input Target Prompt", | |
max_lines=5, | |
placeholder="VLM-generated target prompt, you can first generate if and then modify it (optional)", | |
value='', | |
lines=2 | |
) | |
with gr.Accordion("Advanced Options", open=False, elem_id="accordion1"): | |
base_model_dropdown = gr.Dropdown(label="Base model", choices=BASE_MODELS, value=DEFAULT_BASE_MODEL, interactive=True) | |
negative_prompt = gr.Text( | |
label="Negative Prompt", | |
max_lines=5, | |
placeholder="Please input your negative prompt", | |
value='ugly, low quality',lines=1 | |
) | |
control_strength = gr.Slider( | |
label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01 | |
) | |
with gr.Group(): | |
seed = gr.Slider( | |
label="Seed: ", minimum=0, maximum=2147483647, step=1, value=648464818 | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
blending = gr.Checkbox(label="Blending mode", value=True) | |
num_samples = gr.Slider( | |
label="Num samples", minimum=0, maximum=4, step=1, value=4 | |
) | |
with gr.Group(): | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=1, | |
maximum=12, | |
step=0.1, | |
value=7.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=50, | |
) | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Tab(elem_classes="feedback", label="Masked Image"): | |
masked_gallery = gr.Gallery(label='Masked Image', show_label=True, elem_id="gallery", preview=True, height=360) | |
with gr.Tab(elem_classes="feedback", label="Mask"): | |
mask_gallery = gr.Gallery(label='Mask', show_label=True, elem_id="gallery", preview=True, height=360) | |
invert_mask_button = gr.Button("Invert Mask") | |
dilation_size = gr.Slider( | |
label="Dilation size: ", minimum=0, maximum=50, step=1, value=20 | |
) | |
with gr.Row(): | |
dilation_mask_button = gr.Button("Dilation Generated Mask") | |
erosion_mask_button = gr.Button("Erosion Generated Mask") | |
moving_pixels = gr.Slider( | |
label="Moving pixels:", show_label=True, minimum=0, maximum=50, value=4, step=1 | |
) | |
with gr.Row(): | |
move_left_button = gr.Button("Move Left") | |
move_right_button = gr.Button("Move Right") | |
with gr.Row(): | |
move_up_button = gr.Button("Move Up") | |
move_down_button = gr.Button("Move Down") | |
with gr.Tab(elem_classes="feedback", label="Output"): | |
result_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", preview=True, height=400) | |
# target_prompt_output = gr.Text(label="Output Target Prompt", value="", lines=1, interactive=False) | |
reset_button = gr.Button("Reset") | |
init_type = gr.Textbox(label="Init Name", value="", visible=False) | |
example_type = gr.Textbox(label="Example Name", value="", visible=False) | |
with gr.Row(): | |
example = gr.Examples( | |
label="Quick Example", | |
examples=EXAMPLES, | |
inputs=[input_image, prompt, seed, init_type, example_type, blending, resize_default, vlm_model_dropdown], | |
examples_per_page=10, | |
cache_examples=False, | |
) | |
with gr.Accordion(label="🎬 Feature Details:", open=True, elem_id="accordion"): | |
with gr.Row(equal_height=True): | |
gr.Markdown(tips) | |
with gr.Row(): | |
gr.Markdown(citation) | |
## gr.examples can not be used to update the gr.Gallery, so we need to use the following two functions to update the gr.Gallery. | |
## And we need to solve the conflict between the upload and change example functions. | |
input_image.upload( | |
init_img, | |
[input_image, init_type, prompt, aspect_ratio, example_change_times], | |
[input_image, original_image, original_mask, prompt, mask_gallery, masked_gallery, result_gallery, target_prompt, init_type, aspect_ratio, resize_default, invert_mask_state, example_change_times] | |
) | |
example_type.change(fn=update_example, inputs=[example_type, prompt, example_change_times], outputs=[input_image, prompt, original_image, original_mask, mask_gallery, masked_gallery, result_gallery, aspect_ratio, target_prompt, invert_mask_state, example_change_times]) | |
## vlm and base model dropdown | |
vlm_model_dropdown.change(fn=update_vlm_model, inputs=[vlm_model_dropdown], outputs=[status]) | |
base_model_dropdown.change(fn=update_base_model, inputs=[base_model_dropdown], outputs=[status]) | |
GPT4o_KEY_submit.click(fn=submit_GPT4o_KEY, inputs=[GPT4o_KEY], outputs=[GPT4o_KEY, vlm_model_dropdown]) | |
invert_mask_button.click(fn=invert_mask, inputs=[input_image, original_image, original_mask], outputs=[masked_gallery, mask_gallery, original_mask, invert_mask_state]) | |
ips=[input_image, | |
original_image, | |
original_mask, | |
prompt, | |
negative_prompt, | |
control_strength, | |
seed, | |
randomize_seed, | |
guidance_scale, | |
num_inference_steps, | |
num_samples, | |
blending, | |
category, | |
target_prompt, | |
resize_default, | |
aspect_ratio, | |
invert_mask_state] | |
## run brushedit | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, mask_gallery, masked_gallery, prompt, target_prompt, invert_mask_state]) | |
## mask func | |
mask_button.click(fn=process_mask, inputs=[input_image, original_image, prompt, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask, category]) | |
random_mask_button.click(fn=process_random_mask, inputs=[input_image, original_image, original_mask, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask]) | |
dilation_mask_button.click(fn=process_dilation_mask, inputs=[input_image, original_image, original_mask, resize_default, aspect_ratio, dilation_size], outputs=[ masked_gallery, mask_gallery, original_mask]) | |
erosion_mask_button.click(fn=process_erosion_mask, inputs=[input_image, original_image, original_mask, resize_default, aspect_ratio, dilation_size], outputs=[ masked_gallery, mask_gallery, original_mask]) | |
## move mask func | |
move_left_button.click(fn=move_mask_left, inputs=[input_image, original_image, original_mask, moving_pixels, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask]) | |
move_right_button.click(fn=move_mask_right, inputs=[input_image, original_image, original_mask, moving_pixels, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask]) | |
move_up_button.click(fn=move_mask_up, inputs=[input_image, original_image, original_mask, moving_pixels, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask]) | |
move_down_button.click(fn=move_mask_down, inputs=[input_image, original_image, original_mask, moving_pixels, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask]) | |
## prompt func | |
generate_target_prompt_button.click(fn=generate_target_prompt, inputs=[input_image, original_image, prompt], outputs=[target_prompt]) | |
## reset func | |
reset_button.click(fn=reset_func, inputs=[input_image, original_image, original_mask, prompt, target_prompt], outputs=[input_image, original_image, original_mask, prompt, mask_gallery, masked_gallery, result_gallery, target_prompt, resize_default, invert_mask_state]) | |
demo.launch() | |