Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
import torchvision | |
from scipy import ndimage | |
# BLIP | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
# SAM | |
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator | |
# GroundingDINO | |
from groundingdino.datasets import transforms as T | |
from groundingdino.models import build_model | |
from groundingdino.util.slconfig import SLConfig | |
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
def load_grounding_dino_model(model_config_path, model_checkpoint_path, device): | |
args = SLConfig.fromfile(model_config_path) | |
args.device = device | |
model = build_model(args) | |
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") | |
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) | |
print(load_res) | |
_ = model.eval() | |
return model | |
def generate_caption(processor, blip_model, raw_image, device): | |
# unconditional image captioning | |
inputs = processor(raw_image, return_tensors="pt").to(device, torch.float16) | |
out = blip_model.generate(**inputs) | |
caption = processor.decode(out[0], skip_special_tokens=True) | |
return caption | |
def transform_image(image_pil): | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image, _ = transform(image_pil, None) # 3, h, w | |
return image | |
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True): | |
caption = caption.lower() | |
caption = caption.strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
with torch.no_grad(): | |
outputs = model(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
logits.shape[0] | |
# filter output | |
logits_filt = logits.clone() | |
boxes_filt = boxes.clone() | |
filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
logits_filt.shape[0] | |
# get phrase | |
tokenlizer = model.tokenizer | |
tokenized = tokenlizer(caption) | |
# build pred | |
pred_phrases = [] | |
scores = [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) | |
if with_logits: | |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | |
else: | |
pred_phrases.append(pred_phrase) | |
scores.append(logit.max().item()) | |
return boxes_filt, torch.Tensor(scores), pred_phrases | |
def run_grounded_sam(input_image, | |
text_prompt, | |
task_type, | |
box_threshold, | |
text_threshold, | |
iou_threshold, | |
scribble_mode, | |
sam, | |
groundingdino_model, | |
sam_predictor=None, | |
sam_automask_generator=None, | |
device="cuda"): | |
global blip_processor, blip_model, inpaint_pipeline | |
# load image | |
image = input_image["image"] | |
scribble = input_image["mask"] | |
size = image.size # w, h | |
if sam_predictor is None: | |
sam_predictor = SamPredictor(sam) | |
sam_automask_generator = SamAutomaticMaskGenerator(sam) | |
image_pil = image.convert("RGB") | |
image = np.array(image_pil) | |
if task_type == 'scribble': | |
sam_predictor.set_image(image) | |
scribble = scribble.convert("RGB") | |
scribble = np.array(scribble) | |
scribble = scribble.transpose(2, 1, 0)[0] | |
# 将连通域进行标记 | |
labeled_array, num_features = ndimage.label(scribble >= 255) | |
# 计算每个连通域的质心 | |
centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1)) | |
centers = np.array(centers) | |
point_coords = torch.from_numpy(centers) | |
point_coords = sam_predictor.transform.apply_coords_torch(point_coords, image.shape[:2]) | |
point_coords = point_coords.unsqueeze(0).to(device) | |
point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device) | |
if scribble_mode == 'split': | |
point_coords = point_coords.permute(1, 0, 2) | |
point_labels = point_labels.permute(1, 0) | |
masks, _, _ = sam_predictor.predict_torch( | |
point_coords=point_coords if len(point_coords) > 0 else None, | |
point_labels=point_labels if len(point_coords) > 0 else None, | |
mask_input = None, | |
boxes = None, | |
multimask_output = False, | |
) | |
elif task_type == 'automask': | |
masks = sam_automask_generator.generate(image) | |
else: | |
transformed_image = transform_image(image_pil) | |
if task_type == 'automatic': | |
# generate caption and tags | |
# use Tag2Text can generate better captions | |
# https://huggingface.co/spaces/xinyu1205/Tag2Text | |
# but there are some bugs... | |
blip_processor = blip_processor or BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
blip_model = blip_model or BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to(device) | |
text_prompt = generate_caption(blip_processor, blip_model, image_pil, device) | |
print(f"Caption: {text_prompt}") | |
# run grounding dino model | |
boxes_filt, scores, pred_phrases = get_grounding_output( | |
groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold | |
) | |
# process boxes | |
H, W = size[1], size[0] | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
boxes_filt = boxes_filt.cpu() | |
if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic': | |
sam_predictor.set_image(image) | |
if task_type == 'automatic': | |
# use NMS to handle overlapped boxes | |
print(f"Before NMS: {boxes_filt.shape[0]} boxes") | |
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() | |
boxes_filt = boxes_filt[nms_idx] | |
pred_phrases = [pred_phrases[idx] for idx in nms_idx] | |
print(f"After NMS: {boxes_filt.shape[0]} boxes") | |
print(f"Revise caption with number: {text_prompt}") | |
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) | |
masks, _, _ = sam_predictor.predict_torch( | |
point_coords = None, | |
point_labels = None, | |
boxes = transformed_boxes, | |
multimask_output = False, | |
) | |
return masks | |
else: | |
print("task_type:{} error!".format(task_type)) |