File size: 2,389 Bytes
1e5a262
74a942d
1e5a262
eab471f
5b4a98a
3f54553
a26f453
77a6d9d
74a942d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79e4a33
 
 
afff22e
79e4a33
 
 
 
 
 
 
 
afff22e
79e4a33
 
afff22e
79e4a33
afff22e
57455f3
a3bf681
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import appStore.doc_processing as processing
from utils.uploadAndExample import add_upload
import streamlit as st

####################################### Dashboard ######################################################

# App 

st.set_page_config(page_title = 'Vulnerable Groups Identification', 
                   initial_sidebar_state='expanded', layout="wide") 

with st.sidebar:
    # upload and example doc
    choice = st.sidebar.radio(label = 'Select the Document',
                            help = 'You can upload the document \
                            or else you can try a example document', 
                            options = ('Upload Document', 'Try Example'), 
                            horizontal = True)
    add_upload(choice)

with st.container():
        st.markdown("<h2 style='text-align: center; color: black;'> Vulnerable Groups Identification </h2>", unsafe_allow_html=True)
        st.write(' ')

with st.expander("ℹ️ - About this app", expanded=False):
    st.write(
        """
        The Vulnerable Groups Identification App is an open-source\
        digital tool which aims to assist policy analysts and \
        other users in extracting and filtering relevant \
        information from public documents.
        """)
    st.write('**Definitions**')

    st.caption("""
            - **Place holder**: Place holder \
            Place holder \
            Place holder \
            Place holder \ 
            Place holder
              """)
   
    st.write("""
           What happens in the background?
            
           - Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
           In this step the document is broken into smaller paragraphs \
           (based on word/sentence count).
           - Step 2: The paragraphs are fed to **Target Classifier** which detects if
           the paragraph contains any *Target* related information or not.
           - Step 3: The paragraphs which are detected containing some target \
           related information are then fed to multiple classifier to enrich the 
           Information Extraction.
    
           The Step 2 and 3 are repated then similarly for Action and  Policies & Plans.
           """)
                  
    st.write("")


     
if st.button("Analyze Document"):
    print("Analyse")    
    #groups_extraction.identify_groups()