Spaces:
Running
Running
File size: 14,170 Bytes
d5d20be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import cv2
import os
import onnxruntime
from .mtcnn_onnx.detector import detect_faces
from .tensor2numpy import *
from PIL import Image
import requests
from os.path import exists
def download_img(img_url, base_dir):
print("Downloading Onnx Model in:", img_url)
r = requests.get(img_url, stream=True)
filename = img_url.split("/")[-1]
# print(r.status_code) # 返回状态码
if r.status_code == 200:
open(f'{base_dir}/{filename}', 'wb').write(r.content) # 将内容写入图片
print(f"Download Finshed -- {filename}")
del r
class BBox(object):
# bbox is a list of [left, right, top, bottom]
def __init__(self, bbox):
self.left = bbox[0]
self.right = bbox[1]
self.top = bbox[2]
self.bottom = bbox[3]
self.x = bbox[0]
self.y = bbox[2]
self.w = bbox[1] - bbox[0]
self.h = bbox[3] - bbox[2]
# scale to [0,1]
def projectLandmark(self, landmark):
landmark_= np.asarray(np.zeros(landmark.shape))
for i, point in enumerate(landmark):
landmark_[i] = ((point[0]-self.x)/self.w, (point[1]-self.y)/self.h)
return landmark_
# landmark of (5L, 2L) from [0,1] to real range
def reprojectLandmark(self, landmark):
landmark_= np.asarray(np.zeros(landmark.shape))
for i, point in enumerate(landmark):
x = point[0] * self.w + self.x
y = point[1] * self.h + self.y
landmark_[i] = (x, y)
return landmark_
def face_detect_mtcnn(input_image, color_key=None, filter=None):
"""
Inputs:
- input_image: OpenCV Numpy.array
- color_key: 当color_key等于"RGB"时,将不进行转换操作
- filter:当filter等于True时,将抛弃掉置信度小于0.98或人脸框面积小于3600的人脸
return:
- faces: 带有人脸信息的变量
- landmarks: face alignment
"""
if color_key != "RGB":
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
input_image = Image.fromarray(input_image)
faces, landmarks = detect_faces(input_image)
if filter:
face_clean = []
for face in faces:
confidence = face[-1]
x1 = face[0]
y1 = face[1]
x2 = face[2]
y2 = face[3]
w = x2 - x1 + 1
h = y2 - y1 + 1
measure = w * h
if confidence >= 0.98 and measure > 3600:
# 如果检测到的人脸置信度小于0.98或人脸框面积小于3600,则抛弃该人脸
face_clean.append(face)
faces = face_clean
return faces, landmarks
def mtcnn_bbox(face, width, height):
x1 = face[0]
y1 = face[1]
x2 = face[2]
y2 = face[3]
w = x2 - x1 + 1
h = y2 - y1 + 1
size = int(max([w, h]) * 1.1)
cx = x1 + w // 2
cy = y1 + h // 2
x1 = cx - size // 2
x2 = x1 + size
y1 = cy - size // 2
y2 = y1 + size
dx = max(0, -x1)
dy = max(0, -y1)
x1 = max(0, x1)
y1 = max(0, y1)
edx = max(0, x2 - width)
edy = max(0, y2 - height)
x2 = min(width, x2)
y2 = min(height, y2)
return x1, x2, y1, y2, dx, dy, edx, edy
def mtcnn_cropped_face(face_box, image, width, height):
x1, x2, y1, y2, dx, dy, edx, edy = mtcnn_bbox(face_box, width, height)
new_bbox = list(map(int, [x1, x2, y1, y2]))
new_bbox = BBox(new_bbox)
cropped = image[new_bbox.top:new_bbox.bottom, new_bbox.left:new_bbox.right]
if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
cropped = cv2.copyMakeBorder(cropped, int(dy), int(edy), int(dx), int(edx), cv2.BORDER_CONSTANT, 0)
return cropped, new_bbox
def face_landmark_56(input_image, faces_box=None):
basedir = os.path.dirname(os.path.realpath(__file__)).split("mtcnn.py")[0]
mean = np.asarray([0.485, 0.456, 0.406])
std = np.asarray([0.229, 0.224, 0.225])
base_url = "https://linimages.oss-cn-beijing.aliyuncs.com/"
if not exists(f"{basedir}/mtcnn_onnx/weights/landmark_detection_56_se_external.onnx"):
# download onnx model
download_img(img_url=base_url + "landmark_detection_56_se_external.onnx",
base_dir=f"{basedir}/mtcnn_onnx/weights")
ort_session = onnxruntime.InferenceSession(f"{basedir}/mtcnn_onnx/weights/landmark_detection_56_se_external.onnx")
out_size = 56
height, width, _ = input_image.shape
if faces_box is None:
faces_box, _ = face_detect_mtcnn(input_image)
if len(faces_box) == 0:
print('NO face is detected!')
return None
else:
landmarks = []
for face_box in faces_box:
cropped, new_bbox = mtcnn_cropped_face(face_box, input_image, width, height)
cropped_face = cv2.resize(cropped, (out_size, out_size))
test_face = NNormalize(cropped_face, mean=mean, std=std)
test_face = NTo_Tensor(test_face)
test_face = NUnsqueeze(test_face)
ort_inputs = {ort_session.get_inputs()[0].name: test_face}
ort_outs = ort_session.run(None, ort_inputs)
landmark = ort_outs[0]
landmark = landmark.reshape(-1, 2)
landmark = new_bbox.reprojectLandmark(landmark)
landmarks.append(landmark)
return landmarks
REFERENCE_FACIAL_POINTS = [
[30.29459953, 51.69630051],
[65.53179932, 51.50139999],
[48.02519989, 71.73660278],
[33.54930115, 92.3655014],
[62.72990036, 92.20410156]
]
DEFAULT_CROP_SIZE = (96, 112)
def _umeyama(src, dst, estimate_scale=True, scale=1.0):
"""Estimate N-D similarity transformation with or without scaling.
Parameters
----------
src : (M, N) array
Source coordinates.
dst : (M, N) array
Destination coordinates.
estimate_scale : bool
Whether to estimate scaling factor.
Returns
-------
T : (N + 1, N + 1)
The homogeneous similarity transformation matrix. The matrix contains
NaN values only if the problem is not well-conditioned.
References
----------
.. [1] "Least-squares estimation of transformation parameters between two
point patterns", Shinji Umeyama, PAMI 1991, :DOI:`10.1109/34.88573`
"""
num = src.shape[0]
dim = src.shape[1]
# Compute mean of src and dst.
src_mean = src.mean(axis=0)
dst_mean = dst.mean(axis=0)
# Subtract mean from src and dst.
src_demean = src - src_mean
dst_demean = dst - dst_mean
# Eq. (38).
A = dst_demean.T @ src_demean / num
# Eq. (39).
d = np.ones((dim,), dtype=np.double)
if np.linalg.det(A) < 0:
d[dim - 1] = -1
T = np.eye(dim + 1, dtype=np.double)
U, S, V = np.linalg.svd(A)
# Eq. (40) and (43).
rank = np.linalg.matrix_rank(A)
if rank == 0:
return np.nan * T
elif rank == dim - 1:
if np.linalg.det(U) * np.linalg.det(V) > 0:
T[:dim, :dim] = U @ V
else:
s = d[dim - 1]
d[dim - 1] = -1
T[:dim, :dim] = U @ np.diag(d) @ V
d[dim - 1] = s
else:
T[:dim, :dim] = U @ np.diag(d) @ V
if estimate_scale:
# Eq. (41) and (42).
scale = 1.0 / src_demean.var(axis=0).sum() * (S @ d)
else:
scale = scale
T[:dim, dim] = dst_mean - scale * (T[:dim, :dim] @ src_mean.T)
T[:dim, :dim] *= scale
return T, scale
class FaceWarpException(Exception):
def __str__(self):
return 'In File {}:{}'.format(
__file__, super.__str__(self))
def get_reference_facial_points_5(output_size=None,
inner_padding_factor=0.0,
outer_padding=(0, 0),
default_square=False):
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
# 0) make the inner region a square
if default_square:
size_diff = max(tmp_crop_size) - tmp_crop_size
tmp_5pts += size_diff / 2
tmp_crop_size += size_diff
if (output_size and
output_size[0] == tmp_crop_size[0] and
output_size[1] == tmp_crop_size[1]):
print('output_size == DEFAULT_CROP_SIZE {}: return default reference points'.format(tmp_crop_size))
return tmp_5pts
if (inner_padding_factor == 0 and
outer_padding == (0, 0)):
if output_size is None:
print('No paddings to do: return default reference points')
return tmp_5pts
else:
raise FaceWarpException(
'No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
# check output size
if not (0 <= inner_padding_factor <= 1.0):
raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0)
and output_size is None):
output_size = tmp_crop_size * \
(1 + inner_padding_factor * 2).astype(np.int32)
output_size += np.array(outer_padding)
print(' deduced from paddings, output_size = ', output_size)
if not (outer_padding[0] < output_size[0]
and outer_padding[1] < output_size[1]):
raise FaceWarpException('Not (outer_padding[0] < output_size[0]'
'and outer_padding[1] < output_size[1])')
# 1) pad the inner region according inner_padding_factor
# print('---> STEP1: pad the inner region according inner_padding_factor')
if inner_padding_factor > 0:
size_diff = tmp_crop_size * inner_padding_factor * 2
tmp_5pts += size_diff / 2
tmp_crop_size += np.round(size_diff).astype(np.int32)
# print(' crop_size = ', tmp_crop_size)
# print(' reference_5pts = ', tmp_5pts)
# 2) resize the padded inner region
# print('---> STEP2: resize the padded inner region')
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
# print(' crop_size = ', tmp_crop_size)
# print(' size_bf_outer_pad = ', size_bf_outer_pad)
if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
raise FaceWarpException('Must have (output_size - outer_padding)'
'= some_scale * (crop_size * (1.0 + inner_padding_factor)')
scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
# print(' resize scale_factor = ', scale_factor)
tmp_5pts = tmp_5pts * scale_factor
# size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
# tmp_5pts = tmp_5pts + size_diff / 2
tmp_crop_size = size_bf_outer_pad
# print(' crop_size = ', tmp_crop_size)
# print(' reference_5pts = ', tmp_5pts)
# 3) add outer_padding to make output_size
reference_5point = tmp_5pts + np.array(outer_padding)
tmp_crop_size = output_size
# print('---> STEP3: add outer_padding to make output_size')
# print(' crop_size = ', tmp_crop_size)
# print(' reference_5pts = ', tmp_5pts)
#
# print('===> end get_reference_facial_points\n')
return reference_5point
def get_affine_transform_matrix(src_pts, dst_pts):
tfm = np.float32([[1, 0, 0], [0, 1, 0]])
n_pts = src_pts.shape[0]
ones = np.ones((n_pts, 1), src_pts.dtype)
src_pts_ = np.hstack([src_pts, ones])
dst_pts_ = np.hstack([dst_pts, ones])
A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
if rank == 3:
tfm = np.float32([
[A[0, 0], A[1, 0], A[2, 0]],
[A[0, 1], A[1, 1], A[2, 1]]
])
elif rank == 2:
tfm = np.float32([
[A[0, 0], A[1, 0], 0],
[A[0, 1], A[1, 1], 0]
])
return tfm
def warp_and_crop_face(src_img,
facial_pts,
reference_pts=None,
crop_size=(96, 112),
align_type='smilarity'): #smilarity cv2_affine affine
if reference_pts is None:
if crop_size[0] == 96 and crop_size[1] == 112:
reference_pts = REFERENCE_FACIAL_POINTS
else:
default_square = False
inner_padding_factor = 0
outer_padding = (0, 0)
output_size = crop_size
reference_pts = get_reference_facial_points_5(output_size,
inner_padding_factor,
outer_padding,
default_square)
ref_pts = np.float32(reference_pts)
ref_pts_shp = ref_pts.shape
if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
raise FaceWarpException(
'reference_pts.shape must be (K,2) or (2,K) and K>2')
if ref_pts_shp[0] == 2:
ref_pts = ref_pts.T
src_pts = np.float32(facial_pts)
src_pts_shp = src_pts.shape
if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
raise FaceWarpException(
'facial_pts.shape must be (K,2) or (2,K) and K>2')
if src_pts_shp[0] == 2:
src_pts = src_pts.T
if src_pts.shape != ref_pts.shape:
raise FaceWarpException(
'facial_pts and reference_pts must have the same shape')
if align_type == 'cv2_affine':
tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
tfm_inv = cv2.getAffineTransform(ref_pts[0:3], src_pts[0:3])
elif align_type == 'affine':
tfm = get_affine_transform_matrix(src_pts, ref_pts)
tfm_inv = get_affine_transform_matrix(ref_pts, src_pts)
else:
params, scale = _umeyama(src_pts, ref_pts)
tfm = params[:2, :]
params, _ = _umeyama(ref_pts, src_pts, False, scale=1.0/scale)
tfm_inv = params[:2, :]
face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]), flags=3)
return face_img, tfm_inv
if __name__ == "__main__":
image = cv2.imread("/home/parallels/Desktop/IDPhotos/input_image/03.jpg")
face_detect_mtcnn(image)
|