Spaces:
Running
Running
File size: 17,483 Bytes
d5d20be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import cv2
import math
from ..utils import get_box_pro
from ..face_tools import face_detect_mtcnn
from ..vision import IDphotos_cut, detect_distance, resize_image_esp, draw_picture_dots
from ..matting_tools import get_modnet_matting
from .move_image import move
from src.hivisionai.hyTrain.APIs import aliyun_face_detect_api
import numpy as np
import json
def get_max(height, width, d1, d2, d3, d4, rotation_flag):
if rotation_flag:
height1 = height
height2 = height - int(d1.y) # d2
height3 = int(d4.y) # d3
height4 = int(d4.y) - int(d1.x)
width1 = width
width2 = width - int(d3.x)
width3 = int(d2.x)
width4 = int(d2.x) - int(d3.x)
else:
height1 = height
height2 = height - int(d2.y)
height3 = int(d3.y)
height4 = int(d3.y) - int(d2.y)
width1 = width
width2 = width - int(d1.x)
width3 = int(d4.x)
width4 = int(d4.x) - int(d1.x)
height_list = [height1, height2, height3, height4]
width_list = [width1, width2, width3, width4]
background_height = max(height_list)
status_height = height_list.index(background_height)
background_width = max(width_list)
status_width = width_list.index(background_width)
height_change = 0
width_change = 0
height_change2 = 0
width_change2 = 0
if status_height == 1 or status_height == 3:
if rotation_flag:
height_change = abs(d1.y)
height_change2 = d1.y
else:
height_change = abs(d2.y)
height_change2 = d2.y
if status_width == 1 or status_width == 3:
if rotation_flag:
width_change = abs(d3.x)
width_change2 = d3.x
else:
width_change = abs(d1.x)
width_change2 = d1.x
return background_height, status_height, background_width, status_width, height_change, width_change,\
height_change2, width_change2
class LinearFunction_TwoDots(object):
"""
通过两个坐标点构建线性函数
"""
def __init__(self, dot1, dot2):
self.d1 = dot1
self.d2 = dot2
self.k = (self.d2.y - self.d1.y) / (self.d2.x - self.d1.x)
self.b = self.d2.y - self.k * self.d2.x
def forward(self, input, mode="x"):
if mode == "x":
return self.k * input + self.b
elif mode == "y":
return (input - self.b) / self.k
def forward_x(self, x):
return self.k * x + self.b
def forward_y(self, y):
return (y - self.b) / self.k
class Coordinate(object):
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return "({}, {})".format(self.x, self.y)
def IDphotos_create(input_image, size=(413, 295), head_measure_ratio=0.2, head_height_ratio=0.45,
checkpoint_path="checkpoint/ModNet1.0.onnx", align=True):
"""
input_path: 输入图像路径
output_path: 输出图像路径
size: 裁剪尺寸,格式应该如(413,295),竖直距离在前,水平距离在后
head_measure_ratio: 人头面积占照片面积的head_ratio
head_height_ratio: 人头中心处于照片从上到下的head_height
align: 是否进行人脸矫正
"""
input_image = resize_image_esp(input_image, 2000) # 将输入图片压缩到最大边长为2000
# cv2.imwrite("./temp_input_image.jpg", input_image)
origin_png_image = get_modnet_matting(input_image, checkpoint_path)
# cv2.imwrite("./test_image/origin_png_image.png", origin_png_image)
_, _, _, a = cv2.split(origin_png_image)
width_length_ratio = size[0]/size[1] # 长宽比
rotation = aliyun_face_detect_api("./temp_input_image.jpg")
# 如果旋转角过小,则不进行矫正
if abs(rotation) < 0.025:
align=False
if align:
print("开始align")
if rotation > 0:
rotation_flag = 0 # 逆时针旋转
else:
rotation_flag = 1 # 顺时针旋转
width, height, channels = input_image.shape
p_list = [(0, 0), (0, height), (width, 0), (width, height)]
rotate_list = []
rotate = cv2.getRotationMatrix2D((height * 0.5, width * 0.5), rotation, 0.75)
for p in p_list:
p_m = np.array([[p[1]], [p[0]], [1]])
rotate_list.append(np.dot(rotate[:2], p_m))
# print("旋转角的四个顶点", rotate_list)
input_image = cv2.warpAffine(input_image, rotate, (height, width), flags=cv2.INTER_AREA)
new_a = cv2.warpAffine(a, rotate, (height, width), flags=cv2.INTER_AREA)
# cv2.imwrite("./test_image/rotation.jpg", input_image)
# ===================== 开始人脸检测 ===================== #
faces, _ = face_detect_mtcnn(input_image, filter=True)
face_num = len(faces)
print("检测到的人脸数目为:", len(faces))
# ===================== 人脸检测结束 ===================== #
if face_num == 1:
face_rect = faces[0]
x, y = face_rect[0], face_rect[1]
w, h = face_rect[2] - x + 1, face_rect[3] - y + 1
elif face_num == 0:
print("无人脸,返回0!!!")
return 0
else:
print("太多人脸,返回2!!!")
return 2
d1, d2, d3, d4 = rotate_list[0], rotate_list[1], rotate_list[2], rotate_list[3]
d1 = Coordinate(int(d1[0]), int(d1[1]))
d2 = Coordinate(int(d2[0]), int(d2[1]))
d3 = Coordinate(int(d3[0]), int(d3[1]))
d4 = Coordinate(int(d4[0]), int(d4[1]))
print("d1:", d1)
print("d2:", d2)
print("d3:", d3)
print("d4:", d4)
background_height, status_height, background_width, status_width,\
height_change, width_change, height_change2, width_change2 = get_max(width, height, d1, d2, d3, d4, rotation_flag)
print("background_height:", background_height)
print("background_width:", background_width)
print("status_height:", status_height)
print("status_width:", status_width)
print("height_change:", height_change)
print("width_change:", width_change)
background = np.zeros([background_height, background_width, 3])
background_a = np.zeros([background_height, background_width])
background[height_change:height_change+width, width_change:width_change+height] = input_image
background_a[height_change:height_change+width, width_change:width_change+height] = new_a
d1 = Coordinate(int(d1.x)-width_change2, int(d1.y)-height_change2)
d2 = Coordinate(int(d2.x)-width_change2, int(d2.y)-height_change2)
d3 = Coordinate(int(d3.x)-width_change2, int(d3.y)-height_change2)
d4 = Coordinate(int(d4.x)-width_change2, int(d4.y)-height_change2)
print("d1:", d1)
print("d2:", d2)
print("d3:", d3)
print("d4:", d4)
if rotation_flag:
f13 = LinearFunction_TwoDots(d1, d3)
d5 = Coordinate(max(0, d3.x), f13.forward_x(max(0, d3.x)))
print("d5:", d5)
f42 = LinearFunction_TwoDots(d4, d2)
d7 = Coordinate(f42.forward_y(d5.y), d5.y)
print("d7", d7)
background_draw = draw_picture_dots(background, dots=[(d1.x, d1.y),
(d2.x, d2.y),
(d3.x, d3.y),
(d4.x, d4.y),
(d5.x, d5.y),
(d7.x, d7.y)])
# cv2.imwrite("./test_image/rotation_background.jpg", background_draw)
if x<d5.x or x+w>d7.x:
print("return 6")
return 6
background_output = background[:int(d5.y), int(d5.x):int(d7.x)]
background_a_output = background_a[:int(d5.y), int(d5.x):int(d7.x)]
# cv2.imwrite("./test_image/rotation_background_cut.jpg", background_output)
else:
f34 = LinearFunction_TwoDots(d3, d4)
d5 = Coordinate(min(width_change+height, d4.x), f34.forward_x(min(width_change+height, d4.x)))
print("d5:", d5)
f13 = LinearFunction_TwoDots(d1, d3)
d7 = Coordinate(f13.forward_y(d5.y), d5.y)
print("d7", d7)
if x<d7.x or x+w>d5.x:
print("return 6")
return 6
background_draw = draw_picture_dots(background, dots=[(d1.x, d1.y),
(d2.x, d2.y),
(d3.x, d3.y),
(d4.x, d4.y),
(d5.x, d5.y),
(d7.x, d7.y)])
# cv2.imwrite("./test_image/rotation_background.jpg", background_draw)
background_output = background[:int(d5.y), int(d7.x):int(d5.x)]
background_a_output = background_a[:int(d5.y), int(d7.x):int(d5.x)]
# cv2.imwrite("./test_image/rotation_background_cut.jpg", background_output)
input_image = np.uint8(background_output)
b, g, r = cv2.split(input_image)
origin_png_image = cv2.merge((b, g, r, np.uint8(background_a_output)))
# ===================== 开始人脸检测 ===================== #
width, length = input_image.shape[0], input_image.shape[1]
faces, _ = face_detect_mtcnn(input_image, filter=True)
face_num = len(faces)
print("检测到的人脸数目为:", len(faces))
# ===================== 人脸检测结束 ===================== #
if face_num == 1:
face_rect = faces[0]
x, y = face_rect[0], face_rect[1]
w, h = face_rect[2] - x + 1, face_rect[3] - y + 1
# x,y,w,h代表人脸框的左上角坐标和宽高
# 检测头顶下方空隙,如果头顶下方空隙过小,则拒绝
if y+h >= 0.85*width:
# print("face bottom too short! y+h={} width={}".format(y+h, width))
print("在人脸下方的空间太少,返回值3!!!")
return 3
# 第一次裁剪
# 确定裁剪的基本参数
face_center = (x+w/2, y+h/2) # 面部中心坐标
face_measure = w*h # 面部面积
crop_measure = face_measure/head_measure_ratio # 裁剪框面积:为面部面积的5倍
resize_ratio = crop_measure/(size[0]*size[1]) # 裁剪框缩放率(以输入尺寸为标准)
resize_ratio_single = math.sqrt(resize_ratio)
crop_size = (int(size[0]*resize_ratio_single), int(size[1]*resize_ratio_single)) # 裁剪框大小
print("crop_size:", crop_size)
# 裁剪规则:x1和y1为裁剪的起始坐标,x2和y2为裁剪的最终坐标
# y的确定由人脸中心在照片的45%位置决定
x1 = int(face_center[0]-crop_size[1]/2)
y1 = int(face_center[1]-crop_size[0]*head_height_ratio)
y2 = y1+crop_size[0]
x2 = x1+crop_size[1]
# 对原图进行抠图,得到透明图img
print("开始进行抠图")
# origin_png_image => 对原图的抠图结果
# cut_image => 第一次裁剪后的图片
# result_image => 第二次裁剪后的图片/输出图片
# origin_png_image = get_human_matting(input_image, get_file_dir(checkpoint_path))
cut_image = IDphotos_cut(x1, y1, x2, y2, origin_png_image)
# cv2.imwrite("./temp.png", cut_image)
# 对裁剪得到的图片temp_path,我们将image=temp_path resize为裁剪框大小,这样方便进行后续计算
cut_image = cv2.resize(cut_image, (crop_size[1], crop_size[0]))
y_top, y_bottom, x_left, x_right = get_box_pro(cut_image, model=2) # 得到透明图中人像的上下左右距离信息
print("y_top:{}, y_bottom:{}, x_left:{}, x_right:{}".format(y_top, y_bottom, x_left, x_right))
# 判断左右是否有间隙
if x_left > 0 or x_right > 0:
# 左右有空隙, 我们需要减掉它
print("左右有空隙!")
status_left_right = 1
cut_value_top = int(((x_left + x_right) * width_length_ratio) / 2) # 减去左右,为了保持比例,上下也要相应减少cut_value_top
print("cut_value_top:", cut_value_top)
else:
# 左右没有空隙, 则不管
status_left_right = 0
cut_value_top = 0
print("cut_value_top:", cut_value_top)
# 检测人头顶与照片的顶部是否在合适的距离内
print("y_top:", y_top)
status_top, move_value = detect_distance(y_top-int((x_left+x_right)*width_length_ratio/2), crop_size[0])
# status=0 => 距离合适, 无需移动
# status=1 => 距离过大, 人像应向上移动
# status=2 => 距离过小, 人像应向下移动
# move_value => 上下移动的距离
print("status_top:", status_top)
print("move_value:", move_value)
# 开始第二次裁剪
if status_top == 0:
# 如果上下距离合适,则无需移动
if status_left_right:
# 如果左右有空隙,则需要用到cut_value_top
result_image = IDphotos_cut(x1 + x_left,
y1 + cut_value_top,
x2 - x_right,
y2 - cut_value_top,
origin_png_image)
else:
# 如果左右没有空隙,那么则无需改动
result_image = cut_image
elif status_top == 1:
# 如果头顶离照片顶部距离过大,需要人像向上移动,则需要用到move_value
if status_left_right:
# 左右存在距离,则需要cut_value_top
result_image = IDphotos_cut(x1 + x_left,
y1 + cut_value_top + move_value,
x2 - x_right,
y2 - cut_value_top + move_value,
origin_png_image)
else:
# 左右不存在距离
result_image = IDphotos_cut(x1 + x_left,
y1 + move_value,
x2 - x_right,
y2 + move_value,
origin_png_image)
else:
# 如果头顶离照片顶部距离过小,则需要人像向下移动,则需要用到move_value
if status_left_right:
# 左右存在距离,则需要cut_value_top
result_image = IDphotos_cut(x1 + x_left,
y1 + cut_value_top - move_value,
x2 - x_right,
y2 - cut_value_top - move_value,
origin_png_image)
else:
# 左右不存在距离
result_image = IDphotos_cut(x1 + x_left,
y1 - move_value,
x2 - x_right,
y2 - move_value,
origin_png_image)
# 调节头顶位置————防止底部空一块儿
result_image = move(result_image)
# 高清保存
# cv2.imwrite(output_path.replace(".png", "_HD.png"), result_image)
# 普清保存
result_image2 = cv2.resize(result_image, (size[1], size[0]), interpolation=cv2.INTER_AREA)
# cv2.imwrite("./output_image.png", result_image)
print("完成.返回1")
return 1, result_image, result_image2
elif face_num == 0:
print("无人脸,返回0!!!")
return 0
else:
print("太多人脸,返回2!!!")
return 2
if __name__ == "__main__":
with open("./Setting.json") as json_file:
# file_list = get_filedir_filelist("./input_image")
setting = json.load(json_file)
filedir = "../IDPhotos/input_image/linzeyi.jpg"
file_list = [filedir]
for filedir in file_list:
print(filedir)
# try:
status_id, result_image, result_image2 = IDphotos_create(cv2.imread(filedir),
size=(setting["size_height"], setting["size_width"]),
head_height_ratio=setting["head_height_ratio"],
head_measure_ratio=setting["head_measure_ratio"],
checkpoint_path=setting["checkpoint_path"],
align=True)
# cv2.imwrite("./result_image.png", result_image)
if status_id == 1:
print("处理完毕!")
elif status_id == 0:
print("没有人脸!请重新上传有人脸的照片.")
elif status_id == 2:
print("人脸不只一张!请重新上传单独人脸的照片.")
elif status_id == 3:
print("人头下方空隙不足!")
elif status_id == 4:
print("此照片不能制作该规格!")
# except Exception as e:
# print(e) |