Spaces:
Running
Running
File size: 18,896 Bytes
d5d20be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
"""
@author: cuny
@fileName: faceDetection68.py
@create_time: 2022/01/03 下午10:20
@introduce:
人脸68关键点检测主文件,以类的形式封装
"""
from hivisionai.hyService.cloudService import GetConfig
import os
import cv2
import dlib
import numpy as np
local_file = os.path.dirname(__file__)
PREDICTOR_PATH = f"{local_file}/weights/shape_predictor_68_face_landmarks.dat" # 关键点检测模型路径
MODULE3D_PATH = f"{local_file}/weights/68_points_3D_model.txt" # 3d的68点配置文件路径
# 定义一个人脸检测错误的错误类
class FaceError(Exception):
def __init__(self, err):
super().__init__(err)
self.err = err
def __str__(self):
return self.err
class FaceConfig68(object):
face_area:list = None # 一些其他的参数,在本类中实际没啥用
FACE_POINTS = list(range(17, 68)) # 人脸轮廓点索引
MOUTH_POINTS = list(range(48, 61)) # 嘴巴点索引
RIGHT_BROW_POINTS = list(range(17, 22)) # 右眉毛索引
LEFT_BROW_POINTS = list(range(22, 27)) # 左眉毛索引
RIGHT_EYE_POINTS = list(range(36, 42)) # 右眼索引
LEFT_EYE_POINTS = list(range(42, 48)) # 左眼索引
NOSE_POINTS = list(range(27, 35)) # 鼻子索引
JAW_POINTS = list(range(0, 17)) # 下巴索引
LEFT_FACE = list(range(42, 48)) + list(range(22, 27)) # 左半边脸索引
RIGHT_FACE = list(range(36, 42)) + list(range(17, 22)) # 右半边脸索引
JAW_END = 17 # 下巴结束点
FACE_START = 0 # 人脸识别开始
FACE_END = 68 # 人脸识别结束
# 下面这个是整张脸的mark点,可以用:
# for group in self.OVERLAY_POINTS:
# cv2.fillConvexPoly(face_mask, cv2.convexHull(dst_matrix[group]), (255, 255, 255))
# 来形成人脸蒙版
OVERLAY_POINTS = [
JAW_POINTS,
LEFT_FACE,
RIGHT_FACE
]
class FaceDetection68(FaceConfig68):
"""
人脸68关键点检测主类,当然使用的是dlib开源包
"""
def __init__(self, model_path:str=None, default_download:bool=False, *args, **kwargs):
# 初始化,检查并下载模型
self.model_path = PREDICTOR_PATH if model_path is None else model_path
if not os.path.exists(self.model_path) or default_download: # 下载配置
gc = GetConfig()
gc.load_file(cloud_path="weights/shape_predictor_68_face_landmarks.dat",
local_path=self.model_path)
self.__detector = None
self.__predictor = None
@property
def detector(self):
if self.__detector is None:
self.__detector = dlib.get_frontal_face_detector() # 获取人脸分类器
return self.__detector
@property
def predictor(self):
if self.__predictor is None:
self.__predictor = dlib.shape_predictor(self.model_path) # 输入模型,构建特征提取器
return self.__predictor
@staticmethod
def draw_face(img:np.ndarray, dets:dlib.rectangles, *args, **kwargs):
# 画人脸检测框, 为了一些兼容操作我没有设置默认显示,可以在运行完本函数后将返回值进行self.cv_show()
tmp = img.copy()
for face in dets:
# 左上角(x1,y1),右下角(x2,y2)
x1, y1, x2, y2 = face.left(), face.top(), face.right(), face.bottom()
# print(x1, y1, x2, y2)
cv2.rectangle(tmp, (x1, y1), (x2, y2), (0, 255, 0), 2)
return tmp
@staticmethod
def draw_points(img:np.ndarray, landmarks:np.matrix, if_num:int=False, *args, **kwargs):
"""
画人脸关键点, 为了一些兼容操作我没有设置默认显示,可以在运行完本函数后将返回值进行self.cv_show()
:param img: 输入的是人脸检测的图,必须是3通道或者灰度图
:param if_num: 是否在画关键点的同时画上编号
:param landmarks: 输入的关键点矩阵信息
"""
tmp = img.copy()
h, w, c = tmp.shape
r = int(h / 100) - 2 if h > w else int(w / 100) - 2
for idx, point in enumerate(landmarks):
# 68点的坐标
pos = (point[0, 0], point[0, 1])
# 利用cv2.circle给每个特征点画一个圈,共68个
cv2.circle(tmp, pos, r, color=(0, 0, 255), thickness=-1) # bgr
if if_num is True:
# 利用cv2.putText输出1-68
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(tmp, str(idx + 1), pos, font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
return tmp
@staticmethod
def resize_image_esp(input_image_, esp=2000):
"""
输入:
input_path:numpy图片
esp:限制的最大边长
"""
# resize函数=>可以让原图压缩到最大边为esp的尺寸(不改变比例)
width = input_image_.shape[0]
length = input_image_.shape[1]
max_num = max(width, length)
if max_num > esp:
print("Image resizing...")
if width == max_num:
length = int((esp / width) * length)
width = esp
else:
width = int((esp / length) * width)
length = esp
print(length, width)
im_resize = cv2.resize(input_image_, (length, width), interpolation=cv2.INTER_AREA)
return im_resize
else:
return input_image_
def facesPoints(self, img:np.ndarray, esp:int=None, det_num:int=1,*args, **kwargs):
"""
:param img: 输入的是人脸检测的图,必须是3通道或者灰度图
:param esp: 如果输入了具体数值,会将图片的最大边长缩放至esp,另一边等比例缩放
:param det_num: 人脸检测的迭代次数, 采样次数越多,越有利于检测到更多的人脸
:return
返回人脸检测框对象dets, 人脸关键点矩阵列表(列表中每个元素为一个人脸的关键点矩阵), 人脸关键点元组列表(列表中每个元素为一个人脸的关键点列表)
"""
# win = dlib.image_window()
# win.clear_overlay()
# win.set_image(img)
# dlib的人脸检测装置
if esp is not None:
img = self.resize_image_esp(input_image_=img, esp=esp)
dets = self.detector(img, det_num)
# self.draw_face(img, dets)
# font_color = "green" if len(dets) == 1 else "red"
# dg.debug_print("Number of faces detected: {}".format(len(dets)), font_color=font_color)
landmarkList = []
pointsList = []
for d in dets:
shape = self.predictor(img, d)
landmark = np.matrix([[p.x, p.y] for p in shape.parts()])
landmarkList.append(landmark)
point_list = []
for p in landmark.tolist():
point_list.append((p[0], p[1]))
pointsList.append(point_list)
# dg.debug_print("Key point detection SUCCESS.", font_color="green")
return dets, landmarkList, pointsList
def facePoints(self, img:np.ndarray, esp:int=None, det_num:int=1, *args, **kwargs):
"""
本函数与facesPoints大致类似,主要区别在于本函数默认只能返回一个人脸关键点参数
"""
# win = dlib.image_window()
# win.clear_overlay()
# win.set_image(img)
# dlib的人脸检测装置, 参数1表示对图片进行上采样一次,采样次数越多,越有利于检测到更多的人脸
if esp is not None:
img = self.resize_image_esp(input_image_=img, esp=esp)
dets = self.detector(img, det_num)
# self.draw_face(img, dets)
font_color = "green" if len(dets) == 1 else "red"
# dg.debug_print("Number of faces detected: {}".format(len(dets)), font_color=font_color)
if font_color=="red":
# 本检测函数必然只能检测出一张人脸
raise FaceError("Face detection error!!!")
d = dets[0] # 唯一人脸
shape = self.predictor(img, d)
landmark = np.matrix([[p.x, p.y] for p in shape.parts()])
# print("face_landmark:", landmark) # 打印关键点矩阵
# shape = predictor(img, )
# dlib.hit_enter_to_continue()
# 返回关键点矩阵,关键点,
point_list = []
for p in landmark.tolist():
point_list.append((p[0], p[1]))
# dg.debug_print("Key point detection SUCCESS.", font_color="green")
# 最后的一个返回参数只会被计算一次,用于标明脸部框的位置
# [人脸框左上角纵坐标(top),左上角横坐标(left),人脸框宽度(width),人脸框高度(height)]
return dets, landmark, point_list
class PoseEstimator68(object):
"""
Estimate head pose according to the facial landmarks
本类将实现但输入图的人脸姿态检测
"""
def __init__(self, img:np.ndarray, params_path:str=None, default_download:bool=False):
self.params_path = MODULE3D_PATH if params_path is None else params_path
if not os.path.exists(self.params_path) or default_download:
gc = GetConfig()
gc.load_file(cloud_path="weights/68_points_3D_model.txt",
local_path=self.params_path)
h, w, c = img.shape
self.size = (h, w)
# 3D model points.
self.model_points = np.array([
(0.0, 0.0, 0.0), # Nose tip
(0.0, -330.0, -65.0), # Chin
(-225.0, 170.0, -135.0), # Left eye left corner
(225.0, 170.0, -135.0), # Right eye right corner
(-150.0, -150.0, -125.0), # Mouth left corner
(150.0, -150.0, -125.0) # Mouth right corner
]) / 4.5
self.model_points_68 = self._get_full_model_points()
# Camera internals
self.focal_length = self.size[1]
self.camera_center = (self.size[1] / 2, self.size[0] / 2)
self.camera_matrix = np.array(
[[self.focal_length, 0, self.camera_center[0]],
[0, self.focal_length, self.camera_center[1]],
[0, 0, 1]], dtype="double")
# Assuming no lens distortion
self.dist_coeefs = np.zeros((4, 1))
# Rotation vector and translation vector
self.r_vec = np.array([[0.01891013], [0.08560084], [-3.14392813]])
self.t_vec = np.array(
[[-14.97821226], [-10.62040383], [-2053.03596872]])
# self.r_vec = None
# self.t_vec = None
def _get_full_model_points(self):
"""Get all 68 3D model points from file"""
raw_value = []
with open(self.params_path) as file:
for line in file:
raw_value.append(line)
model_points = np.array(raw_value, dtype=np.float32)
model_points = np.reshape(model_points, (3, -1)).T
# Transform the model into a front view.
# model_points[:, 0] *= -1
model_points[:, 1] *= -1
model_points[:, 2] *= -1
return model_points
def show_3d_model(self):
from matplotlib import pyplot
from mpl_toolkits.mplot3d import Axes3D
fig = pyplot.figure()
ax = Axes3D(fig)
x = self.model_points_68[:, 0]
y = self.model_points_68[:, 1]
z = self.model_points_68[:, 2]
ax.scatter(x, y, z)
ax.axis('auto')
pyplot.xlabel('x')
pyplot.ylabel('y')
pyplot.show()
def solve_pose(self, image_points):
"""
Solve pose from image points
Return (rotation_vector, translation_vector) as pose.
"""
assert image_points.shape[0] == self.model_points_68.shape[0], "3D points and 2D points should be of same number."
(_, rotation_vector, translation_vector) = cv2.solvePnP(
self.model_points, image_points, self.camera_matrix, self.dist_coeefs)
# (success, rotation_vector, translation_vector) = cv2.solvePnP(
# self.model_points,
# image_points,
# self.camera_matrix,
# self.dist_coeefs,
# rvec=self.r_vec,
# tvec=self.t_vec,
# useExtrinsicGuess=True)
return rotation_vector, translation_vector
def solve_pose_by_68_points(self, image_points):
"""
Solve pose from all the 68 image points
Return (rotation_vector, translation_vector) as pose.
"""
if self.r_vec is None:
(_, rotation_vector, translation_vector) = cv2.solvePnP(
self.model_points_68, image_points, self.camera_matrix, self.dist_coeefs)
self.r_vec = rotation_vector
self.t_vec = translation_vector
(_, rotation_vector, translation_vector) = cv2.solvePnP(
self.model_points_68,
image_points,
self.camera_matrix,
self.dist_coeefs,
rvec=self.r_vec,
tvec=self.t_vec,
useExtrinsicGuess=True)
return rotation_vector, translation_vector
# def draw_annotation_box(self, image, rotation_vector, translation_vector, color=(255, 255, 255), line_width=2):
# """Draw a 3D box as annotation of pose"""
# point_3d = []
# rear_size = 75
# rear_depth = 0
# point_3d.append((-rear_size, -rear_size, rear_depth))
# point_3d.append((-rear_size, rear_size, rear_depth))
# point_3d.append((rear_size, rear_size, rear_depth))
# point_3d.append((rear_size, -rear_size, rear_depth))
# point_3d.append((-rear_size, -rear_size, rear_depth))
#
# front_size = 100
# front_depth = 100
# point_3d.append((-front_size, -front_size, front_depth))
# point_3d.append((-front_size, front_size, front_depth))
# point_3d.append((front_size, front_size, front_depth))
# point_3d.append((front_size, -front_size, front_depth))
# point_3d.append((-front_size, -front_size, front_depth))
# point_3d = np.array(point_3d, dtype=np.float64).reshape(-1, 3)
#
# # Map to 2d image points
# (point_2d, _) = cv2.projectPoints(point_3d,
# rotation_vector,
# translation_vector,
# self.camera_matrix,
# self.dist_coeefs)
# point_2d = np.int32(point_2d.reshape(-1, 2))
#
# # Draw all the lines
# cv2.polylines(image, [point_2d], True, color, line_width, cv2.LINE_AA)
# cv2.line(image, tuple(point_2d[1]), tuple(
# point_2d[6]), color, line_width, cv2.LINE_AA)
# cv2.line(image, tuple(point_2d[2]), tuple(
# point_2d[7]), color, line_width, cv2.LINE_AA)
# cv2.line(image, tuple(point_2d[3]), tuple(
# point_2d[8]), color, line_width, cv2.LINE_AA)
#
# def draw_axis(self, img, R, t):
# points = np.float32(
# [[30, 0, 0], [0, 30, 0], [0, 0, 30], [0, 0, 0]]).reshape(-1, 3)
#
# axisPoints, _ = cv2.projectPoints(
# points, R, t, self.camera_matrix, self.dist_coeefs)
#
# img = cv2.line(img, tuple(axisPoints[3].ravel()), tuple(
# axisPoints[0].ravel()), (255, 0, 0), 3)
# img = cv2.line(img, tuple(axisPoints[3].ravel()), tuple(
# axisPoints[1].ravel()), (0, 255, 0), 3)
# img = cv2.line(img, tuple(axisPoints[3].ravel()), tuple(
# axisPoints[2].ravel()), (0, 0, 255), 3)
def draw_axes(self, img, R, t):
"""
OX is drawn in red, OY in green and OZ in blue.
"""
return cv2.drawFrameAxes(img, self.camera_matrix, self.dist_coeefs, R, t, 30)
@staticmethod
def get_pose_marks(marks):
"""Get marks ready for pose estimation from 68 marks"""
pose_marks = [marks[30], marks[8], marks[36], marks[45], marks[48], marks[54]]
return pose_marks
@staticmethod
def rot_params_rm(R):
from math import pi,atan2,asin, fabs
# x轴
pitch = (180 * atan2(-R[2][1], R[2][2]) / pi)
f = (0 > pitch) - (0 < pitch)
pitch = f * (180 - fabs(pitch))
# y轴
yaw = -(180 * asin(R[2][0]) / pi)
# z轴
roll = (180 * atan2(-R[1][0], R[0][0]) / pi)
f = (0 > roll) - (0 < roll)
roll = f * (180 - fabs(roll))
if not fabs(roll) < 90.0:
roll = f * (180 - fabs(roll))
rot_params = [pitch, yaw, roll]
return rot_params
@staticmethod
def rot_params_rv(rvec_):
from math import pi, atan2, asin, fabs
R = cv2.Rodrigues(rvec_)[0]
# x轴
pitch = (180 * atan2(-R[2][1], R[2][2]) / pi)
f = (0 > pitch) - (0 < pitch)
pitch = f * (180 - fabs(pitch))
# y轴
yaw = -(180 * asin(R[2][0]) / pi)
# z轴
roll = (180 * atan2(-R[1][0], R[0][0]) / pi)
f = (0 > roll) - (0 < roll)
roll = f * (180 - fabs(roll))
rot_params = [pitch, yaw, roll]
return rot_params
def imageEulerAngle(self, img_points):
# 这里的img_points对应的是facePoints的第三个返回值,注意是facePoints而非facesPoints
# 对于facesPoints而言,需要把第三个返回值逐一取出再输入
# 把列表转为矩阵,且编码形式为float64
img_points = np.array(img_points, dtype=np.float64)
rvec, tvec = self.solve_pose_by_68_points(img_points)
# 旋转向量转旋转矩阵
R = cv2.Rodrigues(rvec)[0]
# theta = np.linalg.norm(rvec)
# r = rvec / theta
# R_ = np.array([[0, -r[2][0], r[1][0]],
# [r[2][0], 0, -r[0][0]],
# [-r[1][0], r[0][0], 0]])
# R = np.cos(theta) * np.eye(3) + (1 - np.cos(theta)) * r * r.T + np.sin(theta) * R_
# 旋转矩阵转欧拉角
eulerAngle = self.rot_params_rm(R)
# 返回一个元组和欧拉角列表
return (rvec, tvec, R), eulerAngle
# if __name__ == "__main__":
# # 示例
# from hyService.utils import Debug
# dg = Debug()
# image_input = cv2.imread("./test.jpg") # 读取一张图片, 必须是三通道或者灰度图
# fd68 = FaceDetection68() # 初始化人脸关键点检测类
# dets_, landmark_, point_list_ = fd68.facePoints(image_input) # 输入图片. 检测单张人脸
# # dets_, landmark_, point_list_ = fd68.facesPoints(input_image) # 输入图片. 检测多张人脸
# img = fd68.draw_points(image_input, landmark_)
# dg.cv_show(img)
# pe = PoseEstimator68(image_input)
# _, ea = pe.imageEulerAngle(point_list_) # 输入关键点列表, 如果要使用facesPoints,则输入的是point_list_[i]
# print(ea) # 结果 |