Spaces:
Running
Running
import numpy as np | |
import cv2 | |
import functools | |
import time | |
from hivisionai.hycv.matting_tools import read_modnet_image | |
def calTime(mark): | |
if isinstance(mark, str): | |
def decorater(func): | |
def wrapper(*args, **kw): | |
start_time = time.time() | |
return_param = func(*args, **kw) | |
print("[Mark-{}] {} 函数花费的时间为 {:.2f}.".format(mark, func.__name__, time.time() - start_time)) | |
return return_param | |
return wrapper | |
return decorater | |
else: | |
func = mark | |
def wrapper(*args, **kw): | |
start_time = time.time() | |
return_param = func(*args, **kw) | |
print("{} 函数花费的时间为 {:.2f}.".format(func.__name__, time.time() - start_time)) | |
return return_param | |
return wrapper | |
def standard_photo_resize(input_image: np.array, size): | |
""" | |
input_image: 输入图像,即高清照 | |
size: 标准照的尺寸 | |
""" | |
resize_ratio = input_image.shape[0] / size[0] | |
resize_item = int(round(input_image.shape[0] / size[0])) | |
if resize_ratio >= 2: | |
for i in range(resize_item - 1): | |
if i == 0: | |
result_image = cv2.resize(input_image, | |
(size[1] * (resize_item - i - 1), size[0] * (resize_item - i - 1)), | |
interpolation=cv2.INTER_AREA) | |
else: | |
result_image = cv2.resize(result_image, | |
(size[1] * (resize_item - i - 1), size[0] * (resize_item - i - 1)), | |
interpolation=cv2.INTER_AREA) | |
else: | |
result_image = cv2.resize(input_image, (size[1], size[0]), interpolation=cv2.INTER_AREA) | |
return result_image | |
def hollowOutFix(src: np.ndarray) -> np.ndarray: | |
b, g, r, a = cv2.split(src) | |
src_bgr = cv2.merge((b, g, r)) | |
# -----------padding---------- # | |
add_area = np.zeros((10, a.shape[1]), np.uint8) | |
a = np.vstack((add_area, a, add_area)) | |
add_area = np.zeros((a.shape[0], 10), np.uint8) | |
a = np.hstack((add_area, a, add_area)) | |
# -------------end------------ # | |
_, a_threshold = cv2.threshold(a, 127, 255, 0) | |
a_erode = cv2.erode(a_threshold, kernel=cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)), iterations=3) | |
contours, hierarchy = cv2.findContours(a_erode, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
contours = [x for x in contours] | |
# contours = np.squeeze(contours) | |
contours.sort(key=lambda c: cv2.contourArea(c), reverse=True) | |
a_contour = cv2.drawContours(np.zeros(a.shape, np.uint8), contours[0], -1, 255, 2) | |
# a_base = a_contour[1:-1, 1:-1] | |
h, w = a.shape[:2] | |
mask = np.zeros([h + 2, w + 2], np.uint8) # mask必须行和列都加2,且必须为uint8单通道阵列 | |
cv2.floodFill(a_contour, mask=mask, seedPoint=(0, 0), newVal=255) | |
a = cv2.add(a, 255 - a_contour) | |
return cv2.merge((src_bgr, a[10:-10, 10:-10])) | |
def resize_image_by_min(input_image, esp=600): | |
""" | |
将图像缩放为最短边至少为600的图像。 | |
:param input_image: 输入图像(OpenCV矩阵) | |
:param esp: 缩放后的最短边长 | |
:return: 缩放后的图像,缩放倍率 | |
""" | |
height, width = input_image.shape[0], input_image.shape[1] | |
min_border = min(height, width) | |
if min_border < esp: | |
if height >= width: | |
new_width = esp | |
new_height = height * esp // width | |
else: | |
new_height = esp | |
new_width = width * esp // height | |
return cv2.resize(input_image, (new_width, new_height), interpolation=cv2.INTER_AREA), new_height / height | |
else: | |
return input_image, 1 | |
def rotate_bound(image, angle): | |
""" | |
一个旋转函数,输入一张图片和一个旋转角,可以实现不损失图像信息的旋转。 | |
""" | |
# grab the dimensions of the image and then determine the | |
# center | |
(h, w) = image.shape[:2] | |
(cX, cY) = (w / 2, h / 2) | |
# grab the rotation matrix (applying the negative of the | |
# angle to rotate clockwise), then grab the sine and cosine | |
# (i.e., the rotation components of the matrix) | |
M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0) | |
cos = np.abs(M[0, 0]) | |
sin = np.abs(M[0, 1]) | |
# compute the new bounding dimensions of the image | |
nW = int((h * sin) + (w * cos)) | |
nH = int((h * cos) + (w * sin)) | |
# adjust the rotation matrix to take into account translation | |
M[0, 2] += (nW / 2) - cX | |
M[1, 2] += (nH / 2) - cY | |
# perform the actual rotation and return the image | |
return cv2.warpAffine(image, M, (nW, nH)), cos, sin | |
def rotate_bound_4channels(image, a, angle): | |
""" | |
一个旋转函数,输入一张图片和一个旋转角,可以实现不损失图像信息的旋转。 | |
""" | |
input_image, cos, sin = rotate_bound(image, angle) | |
new_a, _, _ = rotate_bound(a, angle) # 对做matte旋转,以便之后merge | |
b, g, r = cv2.split(input_image) | |
result_image = cv2.merge((b, g, r, new_a)) # 得到抠图结果图的无损旋转结果 | |
# perform the actual rotation and return the image | |
return input_image, result_image, cos, sin | |
def draw_picture_dots(image, dots, pen_size=10, pen_color=(0, 0, 255)): | |
""" | |
给一张照片上绘制点。 | |
image: Opencv图像矩阵 | |
dots: 一堆点,形如[(100,100),(150,100)] | |
pen_size: 画笔的大小 | |
pen_color: 画笔的颜色 | |
""" | |
if isinstance(dots, dict): | |
dots = [v for u, v in dots.items()] | |
image = image.copy() | |
dots = list(dots) | |
for dot in dots: | |
# print("dot: ", dot) | |
x = dot[0] | |
y = dot[1] | |
cv2.circle(image, (int(x), int(y)), pen_size, pen_color, -1) | |
return image | |
def get_modnet_matting(input_image, sess, ref_size=512): | |
""" | |
使用modnet模型对图像进行抠图处理。 | |
:param input_image: 输入图像(opencv矩阵) | |
:param sess: onnxruntime推理主体 | |
:param ref_size: 缩放参数 | |
:return: 抠图后的图像 | |
""" | |
input_name = sess.get_inputs()[0].name | |
output_name = sess.get_outputs()[0].name | |
im, width, length = read_modnet_image(input_image=input_image, ref_size=ref_size) | |
matte = sess.run([output_name], {input_name: im}) | |
matte = (matte[0] * 255).astype('uint8') | |
matte = np.squeeze(matte) | |
mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA) | |
b, g, r = cv2.split(np.uint8(input_image)) | |
output_image = cv2.merge((b, g, r, mask)) | |
return output_image | |
def detect_distance(value, crop_heigh, max=0.06, min=0.04): | |
""" | |
检测人头顶与照片顶部的距离是否在适当范围内。 | |
输入:与顶部的差值 | |
输出:(status, move_value) | |
status=0 不动 | |
status=1 人脸应向上移动(裁剪框向下移动) | |
status-2 人脸应向下移动(裁剪框向上移动) | |
--------------------------------------- | |
value:头顶与照片顶部的距离 | |
crop_heigh: 裁剪框的高度 | |
max: 距离的最大值 | |
min: 距离的最小值 | |
--------------------------------------- | |
""" | |
value = value / crop_heigh # 头顶往上的像素占图像的比例 | |
if min <= value <= max: | |
return 0, 0 | |
elif value > max: | |
# 头顶往上的像素比例高于max | |
move_value = value - max | |
move_value = int(move_value * crop_heigh) | |
# print("上移{}".format(move_value)) | |
return 1, move_value | |
else: | |
# 头顶往上的像素比例低于min | |
move_value = min - value | |
move_value = int(move_value * crop_heigh) | |
# print("下移{}".format(move_value)) | |
return -1, move_value | |