TheEeeeLin's picture
update 20240924
434720c
raw
history blame
12.4 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from PIL import Image
import io
import numpy as np
import cv2
import base64
from hivision.plugin.watermark import Watermarker, WatermarkerStyles
def save_image_dpi_to_bytes(image: np.ndarray, output_image_path: str = None, dpi: int = 300):
"""
设置图像的DPI(每英寸点数)并返回字节流
:param image: numpy.ndarray, 输入的图像数组
:param output_image_path: Path to save the resized image. 保存调整大小后的图像的路径。
:param dpi: int, 要设置的DPI值,默认为300
"""
image = Image.fromarray(image)
# 创建一个字节流对象
byte_stream = io.BytesIO()
# 将图像保存到字节流
image.save(byte_stream, format="PNG", dpi=(dpi, dpi))
# 获取字节流的内容
image_bytes = byte_stream.getvalue()
# Save the image to the output path
if output_image_path:
with open(output_image_path, "wb") as f:
f.write(image_bytes)
return image_bytes
def resize_image_to_kb(input_image: np.ndarray, output_image_path: str = None, target_size_kb: int = 100, dpi: int = 300):
"""
Resize an image to a target size in KB.
将图像调整大小至目标文件大小(KB)。
:param input_image_path: Path to the input image. 输入图像的路径。
:param output_image_path: Path to save the resized image. 保存调整大小后的图像的路径。
:param target_size_kb: Target size in KB. 目标文件大小(KB)。
Example:
resize_image_to_kb('input_image.jpg', 'output_image.jpg', 50)
"""
if isinstance(input_image, np.ndarray):
img = Image.fromarray(input_image)
elif isinstance(input_image, Image.Image):
img = input_image
else:
raise ValueError("input_image must be a NumPy array or PIL Image.")
# Convert image to RGB mode if it's not
if img.mode != "RGB":
img = img.convert("RGB")
# Initial quality value
quality = 95
while True:
# Create a BytesIO object to hold the image data in memory
img_byte_arr = io.BytesIO()
# Save the image to the BytesIO object with the current quality
img.save(img_byte_arr, format="JPEG", quality=quality, dpi=(dpi, dpi))
# Get the size of the image in KB
img_size_kb = len(img_byte_arr.getvalue()) / 1024
# Check if the image size is within the target size
if img_size_kb <= target_size_kb or quality == 1:
# If the image is smaller than the target size, add padding
if img_size_kb < target_size_kb:
padding_size = int(
(target_size_kb * 1024) - len(img_byte_arr.getvalue())
)
padding = b"\x00" * padding_size
img_byte_arr.write(padding)
# Save the image to the output path
if output_image_path:
with open(output_image_path, "wb") as f:
f.write(img_byte_arr.getvalue())
return img_byte_arr.getvalue()
# Reduce the quality if the image is still too large
quality -= 5
# Ensure quality does not go below 1
if quality < 1:
quality = 1
def resize_image_to_kb_base64(input_image, target_size_kb, mode="exact"):
"""
Resize an image to a target size in KB and return it as a base64 encoded string.
将图像调整大小至目标文件大小(KB)并返回base64编码的字符串。
:param input_image: Input image as a NumPy array or PIL Image. 输入图像,可以是NumPy数组或PIL图像。
:param target_size_kb: Target size in KB. 目标文件大小(KB)。
:param mode: Mode of resizing ('exact', 'max', 'min'). 模式:'exact'(精确大小)、'max'(不大于)、'min'(不小于)。
:return: Base64 encoded string of the resized image. 调整大小后的图像的base64编码字符串。
"""
if isinstance(input_image, np.ndarray):
img = Image.fromarray(input_image)
elif isinstance(input_image, Image.Image):
img = input_image
else:
raise ValueError("input_image must be a NumPy array or PIL Image.")
# Convert image to RGB mode if it's not
if img.mode != "RGB":
img = img.convert("RGB")
# Initial quality value
quality = 95
while True:
# Create a BytesIO object to hold the image data in memory
img_byte_arr = io.BytesIO()
# Save the image to the BytesIO object with the current quality
img.save(img_byte_arr, format="JPEG", quality=quality)
# Get the size of the image in KB
img_size_kb = len(img_byte_arr.getvalue()) / 1024
# Check based on the mode
if mode == "exact":
# If the image size is equal to the target size, we can return it
if img_size_kb == target_size_kb:
break
# If the image is smaller than the target size, add padding
elif img_size_kb < target_size_kb:
padding_size = int(
(target_size_kb * 1024) - len(img_byte_arr.getvalue())
)
padding = b"\x00" * padding_size
img_byte_arr.write(padding)
break
elif mode == "max":
# If the image size is within the target size, we can return it
if img_size_kb <= target_size_kb or quality == 1:
break
elif mode == "min":
# If the image size is greater than or equal to the target size, we can return it
if img_size_kb >= target_size_kb:
break
# Reduce the quality if the image is still too large
quality -= 5
# Ensure quality does not go below 1
if quality < 1:
quality = 1
# Encode the image data to base64
img_base64 = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
return "data:image/png;base64," + img_base64
def numpy_2_base64(img: np.ndarray) -> str:
_, buffer = cv2.imencode(".png", img)
base64_image = base64.b64encode(buffer).decode("utf-8")
return "data:image/png;base64," + base64_image
def base64_2_numpy(base64_image: str) -> np.ndarray:
# Remove the data URL prefix if present
if base64_image.startswith('data:image'):
base64_image = base64_image.split(',')[1]
# Decode base64 string to bytes
img_bytes = base64.b64decode(base64_image)
# Convert bytes to numpy array
img_array = np.frombuffer(img_bytes, dtype=np.uint8)
# Decode the image array
img = cv2.imdecode(img_array, cv2.IMREAD_UNCHANGED)
return img
# 字节流转base64
def bytes_2_base64(img_byte_arr: bytes) -> str:
base64_image = base64.b64encode(img_byte_arr).decode("utf-8")
return "data:image/png;base64," + base64_image
def save_numpy_image(numpy_img, file_path):
# 检查数组的形状
if numpy_img.shape[2] == 4:
# 将 BGR 转换为 RGB,并保留透明通道
rgb_img = np.concatenate(
(np.flip(numpy_img[:, :, :3], axis=-1), numpy_img[:, :, 3:]), axis=-1
).astype(np.uint8)
img = Image.fromarray(rgb_img, mode="RGBA")
else:
# 将 BGR 转换为 RGB
rgb_img = np.flip(numpy_img, axis=-1).astype(np.uint8)
img = Image.fromarray(rgb_img, mode="RGB")
img.save(file_path)
def numpy_to_bytes(numpy_img):
img = Image.fromarray(numpy_img)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return img_byte_arr
def hex_to_rgb(value):
value = value.lstrip("#")
length = len(value)
return tuple(
int(value[i : i + length // 3], 16) for i in range(0, length, length // 3)
)
def generate_gradient(start_color, width, height, mode="updown"):
# 定义背景颜色
end_color = (255, 255, 255) # 白色
# 创建一个空白图像
r_out = np.zeros((height, width), dtype=int)
g_out = np.zeros((height, width), dtype=int)
b_out = np.zeros((height, width), dtype=int)
if mode == "updown":
# 生成上下渐变色
for y in range(height):
r = int(
(y / height) * end_color[0] + ((height - y) / height) * start_color[0]
)
g = int(
(y / height) * end_color[1] + ((height - y) / height) * start_color[1]
)
b = int(
(y / height) * end_color[2] + ((height - y) / height) * start_color[2]
)
r_out[y, :] = r
g_out[y, :] = g
b_out[y, :] = b
else:
# 生成中心渐变色
img = np.zeros((height, width, 3))
# 定义椭圆中心和半径
center = (width // 2, height // 2)
end_axies = max(height, width)
# 定义渐变色
end_color = (255, 255, 255)
# 绘制椭圆
for y in range(end_axies):
axes = (end_axies - y, end_axies - y)
r = int(
(y / end_axies) * end_color[0]
+ ((end_axies - y) / end_axies) * start_color[0]
)
g = int(
(y / end_axies) * end_color[1]
+ ((end_axies - y) / end_axies) * start_color[1]
)
b = int(
(y / end_axies) * end_color[2]
+ ((end_axies - y) / end_axies) * start_color[2]
)
cv2.ellipse(img, center, axes, 0, 0, 360, (b, g, r), -1)
b_out, g_out, r_out = cv2.split(np.uint64(img))
return r_out, g_out, b_out
def add_background(input_image, bgr=(0, 0, 0), mode="pure_color"):
"""
本函数的功能为为透明图像加上背景。
:param input_image: numpy.array(4 channels), 透明图像
:param bgr: tuple, 合成纯色底时的 BGR 值
:param new_background: numpy.array(3 channels),合成自定义图像底时的背景图
:return: output: 合成好的输出图像
"""
height, width = input_image.shape[0], input_image.shape[1]
try:
b, g, r, a = cv2.split(input_image)
except ValueError:
raise ValueError(
"The input image must have 4 channels. 输入图像必须有4个通道,即透明图像。"
)
a_cal = a / 255
if mode == "pure_color":
# 纯色填充
b2 = np.full([height, width], bgr[0], dtype=int)
g2 = np.full([height, width], bgr[1], dtype=int)
r2 = np.full([height, width], bgr[2], dtype=int)
elif mode == "updown_gradient":
b2, g2, r2 = generate_gradient(bgr, width, height, mode="updown")
else:
b2, g2, r2 = generate_gradient(bgr, width, height, mode="center")
output = cv2.merge(
((b - b2) * a_cal + b2, (g - g2) * a_cal + g2, (r - r2) * a_cal + r2)
)
return output
def add_background_with_image(input_image: np.ndarray, background_image: np.ndarray) -> np.ndarray:
"""
本函数的功能为为透明图像加上背景。
:param input_image: numpy.array(4 channels), 透明图像
:param background_image: numpy.array(3 channels), 背景图像
:return: output: 合成好的输出图像
"""
height, width = input_image.shape[:2]
try:
b, g, r, a = cv2.split(input_image)
except ValueError:
raise ValueError(
"The input image must have 4 channels. 输入图像必须有4个通道,即透明图像。"
)
# 确保背景图像与输入图像大小一致
background_image = cv2.resize(background_image, (width, height), cv2.INTER_AREA)
background_image = cv2.cvtColor(background_image, cv2.COLOR_BGR2RGB)
b2, g2, r2 = cv2.split(background_image)
a_cal = a / 255.0
# 修正混合公式
output = cv2.merge(
(b * a_cal + b2 * (1 - a_cal),
g * a_cal + g2 * (1 - a_cal),
r * a_cal + r2 * (1 - a_cal))
)
return output.astype(np.uint8)
def add_watermark(
image, text, size=50, opacity=0.5, angle=45, color="#8B8B1B", space=75
):
image = Image.fromarray(image)
watermarker = Watermarker(
input_image=image,
text=text,
style=WatermarkerStyles.STRIPED,
angle=angle,
color=color,
opacity=opacity,
size=size,
space=space,
)
return np.array(watermarker.image.convert("RGB"))