Files changed (1) hide show
  1. app.py +61 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from sklearn.feature_extraction.text import TfidfVectorizer
4
+ from sklearn.metrics.pairwise import cosine_similarity
5
+
6
+ # Sample Data (REPLACE WITH YOUR ACTUAL DATABASE)
7
+ data = {
8
+ 'event_id': [101, 102, 103, 104, 105],
9
+ 'title': ['Hiking Meetup', 'Book Club Discussion', 'Gardening Workshop', 'Coding Class', 'Yoga Session'],
10
+ 'description': ['Explore local trails', 'Discuss "The Great Gatsby"', 'Learn basic gardening', 'Python programming basics', 'Relaxing yoga practice'],
11
+ 'tags': ['hiking, nature, outdoors', 'books, literature, reading', 'gardening, plants, nature', 'coding, programming, python', 'yoga, fitness, relaxation']
12
+ }
13
+ events_df = pd.DataFrame(data)
14
+
15
+ def recommend_activities(interests, num_recommendations=3):
16
+ if not interests:
17
+ return "Please enter your interests."
18
+
19
+ user_interests = interests.lower()
20
+ tfidf = TfidfVectorizer()
21
+ tfidf_matrix_events = tfidf.fit_transform(events_df['tags'])
22
+ tfidf_matrix_user = tfidf.transform([user_interests])
23
+ similarities = cosine_similarity(tfidf_matrix_user, tfidf_matrix_events)
24
+ top_indices = similarities.argsort()[0][-num_recommendations:][::-1]
25
+ recommendations = events_df.iloc[top_indices][['title', 'description']].values.tolist()
26
+ return recommendations
27
+
28
+
29
+ def create_event(title, description, location, date_time, tags):
30
+ print(f"Event created: {title}, {description}, {location}, {date_time}, {tags}")
31
+ return "Event created successfully!"
32
+
33
+
34
+ with gr.Blocks() as demo:
35
+ gr.Markdown("# AI Community Builder")
36
+
37
+ with gr.Row():
38
+ with gr.Column():
39
+ interests_input = gr.Textbox(label="Your Interests (comma-separated)", lines=2, placeholder="e.g., hiking, reading, cooking")
40
+ num_recs_input = gr.Slider(label="Number of Recommendations", minimum=1, maximum=5, value=3, step=1)
41
+ recommend_button = gr.Button("Get Recommendations")
42
+
43
+ with gr.Column():
44
+ recommendations_output = gr.Dataframe(headers=["Title", "Description"], datatype=["str", "str"], interactive=True)
45
+
46
+
47
+ recommend_button.click(fn=recommend_activities, inputs=[interests_input, num_recs_input], outputs=recommendations_output)
48
+
49
+ with gr.Accordion("Create a New Event", open=False):
50
+ with gr.Row():
51
+ title_input = gr.Textbox(label="Event Title", placeholder="Enter event title")
52
+ description_input = gr.Textbox(label="Description", lines=3, placeholder="Enter a brief description")
53
+ with gr.Row():
54
+ location_input = gr.Textbox(label="Location", placeholder="Enter location details")
55
+ datetime_input = gr.Textbox(label="Date & Time (YYYY-MM-DD HH:MM)", placeholder="Enter date and time")
56
+ tags_input = gr.Textbox(label="Tags (comma-separated)", placeholder="Enter relevant tags")
57
+ create_event_button = gr.Button("Create Event")
58
+
59
+ create_event_button.click(fn=create_event, inputs=[title_input, description_input, location_input, datetime_input, tags_input], outputs=gr.Textbox(label="Result"))
60
+
61
+ demo.launch()