File size: 17,839 Bytes
7f0eec2 861ab00 403cb04 6907c28 403cb04 7f0eec2 861ab00 403cb04 861ab00 b286b42 861ab00 39953cb 861ab00 6907c28 861ab00 f9f9f68 13f875c 861ab00 f589a31 861ab00 6907c28 861ab00 6907c28 7d7cbe2 861ab00 6907c28 a2faa09 6907c28 624b97d 6907c28 39953cb 661f21a 6907c28 aea70a5 861ab00 cfb943c 6907c28 861ab00 f589a31 aea70a5 861ab00 957c702 7f0eec2 403cb04 7e2f91a 403cb04 db87154 7e2f91a 403cb04 6386b69 f589a31 661f21a 73dcfcf 624b97d 39953cb 661f21a f589a31 403cb04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AutoModel
import re
from textblob import TextBlob
from nltk import pos_tag, word_tokenize
from nltk.corpus import stopwords
import emoji
import string
import nltk
from nltk import pos_tag
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import textstat
import pandas as pd
from transformers import pipeline
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import os
from dotenv import load_dotenv
import pandas as pd
load_dotenv()
#Loading author details
def average_word_length(tweet):
words = tweet.split()
return sum(len(word) for word in words) / len(words)
def lexical_diversity(tweet):
words = tweet.split()
unique_words = set(words)
return len(unique_words) / len(words)
def count_capital_letters(tweet):
return sum(1 for char in tweet if char.isupper())
def count_words_surrounded_by_colons(tweet):
# Define a regular expression pattern to match words surrounded by ':'
pattern = r':(\w+):'
# Use re.findall to find all matches in the tweet
matches = re.findall(pattern, tweet)
# Return the count of matched words
return len(matches)
def count_emojis(tweet):
# Convert emoji symbols to their corresponding names
tweet_with_names = emoji.demojize(tweet)
return count_words_surrounded_by_colons(tweet_with_names)
def hashtag_frequency(tweet):
hashtags = re.findall(r'#\w+', tweet)
return len(hashtags)
def mention_frequency(tweet):
mentions = re.findall(r'@\w+', tweet)
return len(mentions)
def count_special_characters(tweet):
special_characters = [char for char in tweet if char in string.punctuation]
return len(special_characters)
def stop_word_frequency(tweet):
stop_words = set(stopwords.words('english'))
words = [word for word in tweet.split() if word.lower() in stop_words]
return len(words)
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')
def get_linguistic_features(tweet):
# Tokenize the tweet
words = word_tokenize(tweet)
# Remove stopwords
stop_words = set(stopwords.words('english'))
filtered_words = [word.lower() for word in words if word.isalnum() and word.lower() not in stop_words]
# Get parts of speech tags
pos_tags = pos_tag(filtered_words)
# Count various linguistic features
noun_count = sum(1 for word, pos in pos_tags if pos.startswith('N'))
verb_count = sum(1 for word, pos in pos_tags if pos.startswith('V'))
participle_count = sum(1 for word, pos in pos_tags if pos.startswith('V') and ('ing' in word or 'ed' in word))
interjection_count = sum(1 for word, pos in pos_tags if pos == 'UH')
pronoun_count = sum(1 for word, pos in pos_tags if pos.startswith('PRP'))
preposition_count = sum(1 for word, pos in pos_tags if pos.startswith('IN'))
adverb_count = sum(1 for word, pos in pos_tags if pos.startswith('RB'))
conjunction_count = sum(1 for word, pos in pos_tags if pos.startswith('CC'))
return {
'Noun_Count': noun_count,
'Verb_Count': verb_count,
'Participle_Count': participle_count,
'Interjection_Count': interjection_count,
'Pronoun_Count': pronoun_count,
'Preposition_Count': preposition_count,
'Adverb_Count': adverb_count,
'Conjunction_Count': conjunction_count
}
def readability_score(tweet):
return textstat.flesch_reading_ease(tweet)
def get_url_frequency(tweet):
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', tweet)
return len(urls)
# Define a function to extract features from a single tweet
def extract_features(tweet):
features = {
'Average_Word_Length': average_word_length(tweet),
# 'Average_Sentence_Length': average_sentence_length(tweet),
'Lexical_Diversity': lexical_diversity(tweet),
'Capital_Letters_Count': count_capital_letters(tweet), # Uncomment if you want to include this feature
'Hashtag_Frequency': hashtag_frequency(tweet),
'Mention_Frequency': mention_frequency(tweet),
'count_emojis': count_emojis(tweet),
'special_chars_count': count_special_characters(tweet),
'Stop_Word_Frequency': stop_word_frequency(tweet),
**get_linguistic_features(tweet), # Include linguistic features
'Readability_Score': readability_score(tweet),
'URL_Frequency': get_url_frequency(tweet) # Assuming you have the correct function for this
}
return features
# # Extract features for all tweets
# features_list = [extract_features(tweet) for tweet in X['text']]
# # Create a Pandas DataFrame
# X_new = pd.DataFrame(features_list)
# Loading personality model
def personality_detection(text, threshold=0.05, endpoint= 1.0):
PERSONALITY_TOKEN =os.environ.get('PERSONALITY_TOKEN', None)
print(PERSONALITY_TOKEN)
tokenizer = AutoTokenizer.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN)
model = AutoModelForSequenceClassification.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN)
with torch.no_grad():
inputs = tokenizer(text, truncation=True, padding=True, return_tensors="pt")
outputs = model(**inputs)
predictions = outputs.logits.squeeze().detach().numpy()
# Get raw logits
logits = model(**inputs).logits
# Apply sigmoid to squash between 0 and 1
probabilities = torch.sigmoid(logits)
# # Set values less than the threshold to 0.05
# predictions[predictions < threshold] = 0.05
# predictions[predictions > endpoint] = 1.0
# print("per",probabilities[0][0].detach().numpy())
# print("per",probabilities[0][1].detach().numpy())
# print("per",probabilities[0][2].detach().numpy())
# print("per",probabilities[0][3].detach().numpy())
# print("per",probabilities[0][4].detach().numpy())
# label_names = ['Agreeableness', 'Conscientiousness', 'Extraversion', 'Neuroticism', 'Openness']
# # result = {label_names[i]: f"{predictions[i]*100:.0f}%" for i in range(len(label_names))}
# result = {label_names[i]: f"{probabilities}%" for i in range(len(label_names))}
# probabilities
print(probabilities)
return [probabilities[0][0].detach().numpy()
,probabilities[0][1].detach().numpy()
,probabilities[0][2].detach().numpy()
,probabilities[0][3].detach().numpy()
,probabilities[0][4].detach().numpy()]
# tokenizer = AutoTokenizer.from_pretrained("Nasserelsaman/microsoft-finetuned-personality")
# model = AutoModelForSequenceClassification.from_pretrained("Nasserelsaman/microsoft-finetuned-personality")
#Loading emotion model
# tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion-multilabel-latest")
# model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion-multilabel-latest")
##use this for gpu
# pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True,device=device )
##use this for cpu
def calc_emotion_score(tweet):
pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True )
emotions = pipe(tweet)[0]
for i in emotions:
print(i)
return [emotions[0]['score'],emotions[1]['score'],emotions[2]['score'],emotions[3]['score'],emotions[4]['score'],emotions[5]['score'],emotions[6]['score'],emotions[7]['score'],emotions[8]['score'],emotions[9]['score'],emotions[10]['score']]
#DCL model launching
def load_model(tweet):
# model = torch.load("./authormodel.pt",map_location ='cpu')
# print(model)
model_name = "vinai/bertweet-base"
PADDING_MAX_LENGTH = 45
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer(tweet, truncation=True, padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True, return_tensors="pt")
print(inputs)
emotion_list = calc_emotion_score(tweet)
print(emotion_list)
preemotion_list = emotion_list[:]
features_list = extract_features(tweet)
for i in features_list.values():
emotion_list.append(i)
print("emotion + author",emotion_list)
# print()
# print(features_list)
personality_list = personality_detection(tweet)
print("personality",personality_list)
# person_list = [personality_list["Extraversion"],personality_list['Neuroticism'],personality_list['Agreeableness'],personality_list['Conscientiousness'],personality_list['Openness']]
emotion_list.extend(personality_list)
print("final list",emotion_list)
# print(str(features_list["Average_Word_Length"]))
inputs['emotion_author_vector'] = torch.tensor([emotion_list])
print("final inputs ",inputs)
# []
# inputs["emotion_author_vector"] =
# train_dataloader=DataLoader(inputs, batch_size=1 , shuffle=False)
# print(train_dataloader)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# def tokenize_function(examples):
# return tokenizer.batch_encode_plus(examples["text"], padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True,truncation=True)
class EmotionAuthorGuidedDCLModel(nn.Module):
def __init__(self,dcl_model:nn.Module,dropout:float=0.5):
super(EmotionAuthorGuidedDCLModel, self).__init__()
self.dcl_model = dcl_model
self.dim = 802
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(self.dim, 1)
# Freeze all layers
for param in self.dcl_model.parameters():
param.requires_grad = False
def forward(self,batch_tokenized):
input_ids = batch_tokenized['input_ids']
attention_mask = batch_tokenized['attention_mask']
emotion_vector = batch_tokenized['emotion_author_vector']
bert_output = self.dcl_model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
bert_cls_hidden_state = bert_output[1]
combined_vector =torch.cat((bert_cls_hidden_state,emotion_vector), 1)
d_combined_vector=self.dropout(combined_vector)
linear_output = self.linear(d_combined_vector)
pred_linear = linear_output.squeeze(1)
return pred_linear
# twee
checkpoint = {
"model_state_dict":torch.load("./model.pt",map_location ='cpu') ,
}
# checkpoint=load_checkpoint(run=run_dcl_study,check_point_name="model_checkpoints/")
class DCLArchitecture(nn.Module):
def __init__(self,dropout:float,bert_model_name:str='vinai/bertweet-base'):
super(DCLArchitecture, self).__init__()
self.bert = AutoModel.from_pretrained(bert_model_name)
self.dim = 768
self.dense = nn.Linear(self.dim, 1)
self.dropout = nn.Dropout(dropout)
def forward(self,batch_tokenized, if_train=False):
input_ids = batch_tokenized['input_ids']
attention_mask = batch_tokenized['attention_mask']
bert_output = self.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True)
bert_cls_hidden_state = bert_output[1]
torch.cuda.empty_cache()
if if_train:
bert_cls_hidden_state_aug = self.dropout(bert_cls_hidden_state)
bert_cls_hidden_state = torch.cat((bert_cls_hidden_state, bert_cls_hidden_state_aug), dim=1).reshape(-1, self.dim)
else:
bert_cls_hidden_state = self.dropout(bert_cls_hidden_state)
linear_output = self.dense(bert_cls_hidden_state)
linear_output = linear_output.squeeze(1)
return bert_cls_hidden_state, linear_output
# dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=best_prams["DROPOUT"])
dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=0.5)
dcl_model.to(device)
DROPOUT = 0.5
fined_tuned_bert_model=dcl_model.bert
model = EmotionAuthorGuidedDCLModel(dcl_model=fined_tuned_bert_model,dropout=DROPOUT)
model.to(device)
model.load_state_dict(checkpoint["model_state_dict"])
# def test_loop(model, test_dataloader, device):
# # collection_metric = MetricCollection(
# # BinaryAccuracy(),
# # MulticlassPrecision(num_classes=2,average=average),
# # MulticlassRecall(num_classes=2,average=average),
# # MulticlassF1Score(num_classes=2,average=average),
# # BinaryConfusionMatrix()
# # )
# # collection_metric.to(device)
# model.eval()
# print(test_dataloader)
# # total_test_loss = 0.0
# for batch in test_dataloader:
# print(batch)
# batch = {k: v.to(device) for k, v in batch.items()}
# # labels = batch["labels"]
# with torch.no_grad():
# pred = model(batch)
# # loss = criteon(pred, labels.float())
# pred = torch.round(torch.sigmoid(pred))
# return pred
# result_metrics=test_loop(model=model, test_dataloader=train_dataloader,device=device)
# print("Hate speech result",result_metrics)
def predict_single_text(model, inputs,device):
# Preprocess the text
# inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Pass the preprocessed text through the model
with torch.no_grad():
model.eval()
pred = model(inputs)
print("prediction ",pred)
print("sigmoid output",torch.sigmoid(pred))
pred = torch.sigmoid(pred)
# Assuming your model returns a single value for prediction
return pred
predicted_class = predict_single_text(model, inputs, device)
return predicted_class,preemotion_list,personality_list
# print("Hate speech result",predicted_class)
#Gradio interface
simple = None
personality_values =None
def greet(tweet):
print("start")
prediction,preemotion_list,personality_list = load_model(tweet)
# preemotion_list = [x * 100 for x in preemotion_list]
simple = pd.DataFrame(
{
"Emotions": ["Anger", "Anticipation", "Disgust", "Fear", "Joy", "Love", "Optimism", "Pessimism", "Sadness","Surprise","Trust"],
"Values": preemotion_list,
}
)
personality_values = pd.DataFrame(
{
"Personality": ['Agreeableness', 'Conscientiousness', 'Extraversion', 'Neuroticism', 'Openness'],
"Values": personality_list,
}
)
# with gr.Blocks() as bar_plot:
# bar_plot.load(outputs= gr.BarPlot(
# simple,
# x="Emotions",
# y="Values",
# title="Simple Bar Plot with made up data",
# tooltip=["a", "b"],
# y_lim=[20, 100],
# ))
# bar_plot.launch()
prediction_value = round(prediction.item(),2)
# features_list = extract_features(tweet)
# print(personality_detection(tweet))
# print(str(features_list["Average_Word_Length"]))
# print(calc_emotion_score(tweet))
predicted_class = torch.round(prediction).item()
print(preemotion_list)
print(personality_list)
print("end")
if (predicted_class==0.0):
label = "Non Hate"
else:
label = "Hate"
return label,str(round(prediction_value,2))+"%",str(round(1-prediction_value,2))+"%",simple,personality_values
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo = gr.Interface(theme= gr.themes.Soft(),
title = "Unmasking Hate: An Integrated Approach to Detecting Hate Speech in Social Media",
# css="""
# .gradio-container {background-color: #caf0f8}
# """,
# live = True,
# fn=greet,
fn=greet, inputs=gr.Textbox(placeholder="Enter an input sentence...",label="Input Sentence"),
allow_flagging = "never",
outputs=[
gr.Label(label="Label"),
gr.Textbox(label="Hate Speech Percentage"),
gr.Textbox(label="Non Hate Speech Percentage"),
gr.BarPlot(
simple,
x="Emotions",
y="Values",
title="Emotion Analysis",
tooltip=["Emotions", "Values"],
y_lim=[0, 1],
label="Emotion bar graph"
),
gr.BarPlot(
personality_values,
x="Personality",
y="Values",
title="Personality Analysis",
tooltip=["Personality", "Values"],
y_lim=[0, 1],
label="Personality bar graph"
)
],
examples=[
["I like you"],
["I hate you"],
["I can't stand those asian always causing trouble. They need to go back to where they came from!"],
["Just saw a Sunni preaching on the street. Why don't they go worship in their own country instead of invading ours?"],
["I wish all bisexuals would just disappear. Sick of their agenda being shoved in our faces"],
["Had a great time celebrating diversity at the multicultural festival today!"],
["Congratulations to Sri Lankans for their cultural contributions to our society"],
["Love is love, no matter who you are or who you love"] ]
)
demo.launch()
|