Spaces:
Sleeping
Sleeping
import llama_cpp | |
import os | |
import json | |
import subprocess | |
from llama_cpp import Llama | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
import gradio as gr | |
llm = None | |
llm_model = None | |
# Dropdown for Model Selection | |
model_dropdown = gr.Dropdown( | |
[ | |
'qwen2-0_5b-instruct-q4_k_m.gguf', | |
'qwen2_500m.gguf', | |
'mistrallite.Q4_K_M.gguf', | |
], | |
value="qwen2-0_5b-instruct-q4_k_m.gguf", | |
label="Model" | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repeat_penalty, | |
selected_model, # This is now a parameter received from the interface | |
): | |
chat_template = MessagesFormatterType.GEMMA_2 | |
global llm | |
global llm_model | |
# Update the model if it has changed | |
if llm is None or llm_model != selected_model: | |
llm = Llama( | |
model_path=f"models/{selected_model}", | |
flash_attn=True, | |
n_gpu_layers=81, | |
n_batch=1024, | |
n_ctx=8192, | |
) | |
llm_model = selected_model | |
provider = LlamaCppPythonProvider(llm) | |
agent = LlamaCppAgent( | |
provider, | |
system_prompt=f"{system_message}", | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True | |
) | |
settings = provider.get_provider_default_settings() | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
settings.stream = True | |
messages = BasicChatHistory() | |
for msn in history: | |
user = { | |
'role': Roles.user, | |
'content': msn[0] | |
} | |
assistant = { | |
'role': Roles.assistant, | |
'content': msn[1] | |
} | |
messages.add_message(user) | |
messages.add_message(assistant) | |
stream = agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False | |
) | |
outputs = "" | |
for output in stream: | |
outputs += output | |
yield outputs | |
description = """<p align="center">Defaults to Qwen 500M</p> | |
""" | |
# Create the Gradio interface | |
with gr.Blocks() as demo: # Create a Gradio Blocks context | |
# Model selection dropdown above the chat | |
model_dropdown.render() | |
# Main chat interface | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p", | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=100, | |
value=40, | |
step=1, | |
label="Top-k", | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
label="Repetition penalty", | |
), | |
model_dropdown # Pass the dropdown directly | |
], | |
retry_btn="Retry", | |
undo_btn="Undo", | |
clear_btn="Clear", | |
submit_btn="Send", | |
title="Chat with Qwen 2 and friends using llama.cpp", | |
description=description, | |
) | |
demo.queue().launch() |