Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
import hopsworks
|
7 |
+
import joblib
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
project = hopsworks.login()
|
11 |
+
fs = project.get_feature_store()
|
12 |
+
|
13 |
+
|
14 |
+
mr = project.get_model_registry()
|
15 |
+
model = mr.get_model("titanic_modal", version=1)
|
16 |
+
model_dir = model.download()
|
17 |
+
model = joblib.load(model_dir + "/titanic_model.pkl")
|
18 |
+
|
19 |
+
|
20 |
+
def titanic(pclass,age,sibsp,parch,fare,sex,embarked):
|
21 |
+
input_list = []
|
22 |
+
input_list.append(pclass)
|
23 |
+
input_list.append(age)
|
24 |
+
input_list.append(sibsp)
|
25 |
+
input_list.append(parch)
|
26 |
+
input_list.append(fare)
|
27 |
+
if sex == "male":
|
28 |
+
input_list.append(0)
|
29 |
+
input_list.append(1)
|
30 |
+
elif sex == "female":
|
31 |
+
input_list.append(1)
|
32 |
+
input_list.append(0)
|
33 |
+
|
34 |
+
if embarked == "C":
|
35 |
+
input_list.append(1)
|
36 |
+
input_list.append(0)
|
37 |
+
input_list.append(0)
|
38 |
+
input_list.append(0)
|
39 |
+
elif embarked == "Q":
|
40 |
+
input_list.append(0)
|
41 |
+
input_list.append(1)
|
42 |
+
input_list.append(0)
|
43 |
+
input_list.append(0)
|
44 |
+
elif embarked == "S":
|
45 |
+
input_list.append(0)
|
46 |
+
input_list.append(0)
|
47 |
+
input_list.append(1)
|
48 |
+
input_list.append(0)
|
49 |
+
elif embarked == "Unknown":
|
50 |
+
input_list.append(0)
|
51 |
+
input_list.append(0)
|
52 |
+
input_list.append(0)
|
53 |
+
input_list.append(1)
|
54 |
+
|
55 |
+
# input_df = pd.DataFrame(data=input_list, columns = ['Pclass', 'Age', 'SibSp', 'Parch',
|
56 |
+
# 'Fare', 'Sex_female','Sex_male',
|
57 |
+
# 'Embarked_C', 'Embarked_Q', 'Embarked_S',
|
58 |
+
# 'Embarked_Unknown'])
|
59 |
+
# 'res' is a list of predictions returned as the label.
|
60 |
+
res = model.predict(np.asarray(input_list).reshape(1, -1))
|
61 |
+
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
|
62 |
+
# the first element.
|
63 |
+
if res[0] == 1:
|
64 |
+
res_str = "survivor"
|
65 |
+
else:
|
66 |
+
res_str = "victim"
|
67 |
+
passenger_url = "https://raw.githubusercontent.com/tomaskubaitis/serverless_ml_titanic/assets/" + res_str + ".png"
|
68 |
+
img = Image.open(requests.get(passenger_url, stream=True).raw)
|
69 |
+
return img
|
70 |
+
# if res[0] == 1:
|
71 |
+
# return "The passenger is predicted to be a survivor."
|
72 |
+
# else:
|
73 |
+
# return "The passenger is predicted to be a victim."
|
74 |
+
|
75 |
+
demo = gr.Interface(
|
76 |
+
fn=titanic,
|
77 |
+
title="Titanic Passenger Predictive Analytics",
|
78 |
+
description="Experiment with passenger data to predict whether the passenger is a survivor or not.",
|
79 |
+
allow_flagging="never",
|
80 |
+
inputs=[
|
81 |
+
gr.inputs.Number(default=2, label="Passenger class (choose from either 1, 2 or 3)"),
|
82 |
+
gr.inputs.Number(default=30, label="Age in full years (if child younger than 1 round up to 1)"),
|
83 |
+
gr.inputs.Number(default=1, label="Number of siblings or spouses"),
|
84 |
+
gr.inputs.Number(default=0, label="Number of parents or children"),
|
85 |
+
gr.inputs.Number(default=100, label="Fare (cost between 0 and 513)"),
|
86 |
+
gr.inputs.Textbox(default="male", label="Sex (choose from either male or female)"),
|
87 |
+
gr.inputs.Textbox(default="Unknown", label="Embarked (choose from either C, Q, S or Unknown)"),
|
88 |
+
],
|
89 |
+
# outputs=gr.outputs.Textbox())
|
90 |
+
outputs=gr.Image(type="pil"))
|
91 |
+
|
92 |
+
demo.launch()
|