SureRAG / app.py
tonic
Update app.py
fa0faa4
raw
history blame
6.47 kB
import gradio as gr
import requests
import os
def check_hallucination(assertion, citation):
api_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
header = {"Authorization": f"Bearer {hf_token}"}
payload = {"inputs": f"{assertion} [SEP] {citation}"}
response = requests.post(api_url, headers=header, json=payload, timeout=120)
output = response.json()
output = output[0][0]["score"]
return f"**hallucination score:** {output}"
# Define the API parameters
vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
headers = {"Authorization": f"Bearer {hf_token}"}
# Function to query the API
def query(payload):
response = requests.post(vapi_url, headers=headers, json=payload)
return response.json()
# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
# Combine the inputs
combined_input = f"{input1}. {input2}"
# Make the API call
output = query({"inputs": combined_input})
# Extract the score from the output
score = output[0][0]['score']
# Generate a label based on the score
if score < 0.5:
label = f"🔴 High risk. Score: {score:.2f}"
else:
label = f"🟢 Low risk. Score: {score:.2f}"
return label
def query_vectara(text):
user_message = text
# Read authentication parameters from the .env file
customer_id = os.getenv('CUSTOMER_ID')
corpus_id = os.getenv('CORPUS_ID')
api_key = os.getenv('API_KEY')
# Define the headers
api_key_header = {
"customer-id": customer_id,
"x-api-key": api_key
}
# Define the request body in the structure provided in the example
request_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 1,
"numResults": 25,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.35
}
},
"corpusKey": [
{
"customerId": customer_id,
"corpusId": corpus_id,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "auto",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
# Make the API request using Gradio
response = requests.post(
"https://api.vectara.io/v1/query",
json=request_body, # Use json to automatically serialize the request body
verify=True,
headers=api_key_header
)
if response.status_code == 200:
query_data = response.json()
if query_data:
sources_info = []
# Extract the summary.
summary = query_data['responseSet'][0]['summary'][0]['text']
# Iterate over all response sets
for response_set in query_data.get('responseSet', []):
# Extract sources
# Limit to top 5 sources.
for source in response_set.get('response', [])[:5]:
source_metadata = source.get('metadata', [])
source_info = {}
for metadata in source_metadata:
metadata_name = metadata.get('name', '')
metadata_value = metadata.get('value', '')
if metadata_name == 'title':
source_info['title'] = metadata_value
elif metadata_name == 'author':
source_info['author'] = metadata_value
elif metadata_name == 'pageNumber':
source_info['page number'] = metadata_value
if source_info:
sources_info.append(source_info)
result = {"summary": summary, "sources": sources_info}
return f"{json.dumps(result, indent=2)}"
else:
return "No data found in the response."
else:
return f"Error: {response.status_code}"
# Create the Gradio interface
iface = gr.Interface(
fn=evaluate_hallucination,
inputs=[gr.Textbox(label="Assertion"), gr.Textbox(label="Citation")],
outputs=[gr.Label(), gr.Textbox(label="Explanation")],
live=False,
title="👋🏻Welcome to 🌟Tonic's 🧠🌈Hallucination Tester 🔴🟢",
description="How To Use 🌈Hallucination tester: 🗣️📝add any assertion from an LLM or a human 🗣️😷 add any citation from a RAG retriever or a source 👇🏻📩 Press send 🔴red means a 🌈hallucination, 🟢 green means a 🧠credible assertion. Check out the model [vectara/hallucination_evaluation_model](https://huggingface.co/vectara/hallucination_evaluation_model) You can also use 🥒🍆🫑Vectara - Hallucination Tester 🗣️😷 via API below or way by cloning this space. 🧬🔬🔍 Simply click here: Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗",
theme='ParityError/Anime',
)
# Launch the interface
iface.launch()