File size: 5,399 Bytes
85ac990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b42b884
 
85ac990
 
b42b884
 
85ac990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0993d5e
 
85ac990
 
 
 
 
 
 
 
0993d5e
85ac990
0993d5e
85ac990
0993d5e
85ac990
 
 
cdf1241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ac990
 
 
 
 
 
 
 
 
 
 
 
 
 
5a2db0a
 
 
 
 
 
 
85ac990
 
 
 
 
 
 
5a2db0a
 
 
 
 
85ac990
 
 
5a2db0a
85ac990
5a2db0a
85ac990
 
 
 
 
cdf1241
 
85ac990
 
5a2db0a
85ac990
 
cdf1241
85ac990
 
 
 
204391c
85ac990
 
204391c
cdf1241
204391c
85ac990
 
5a2db0a
 
 
 
 
cdf1241
5a2db0a
85ac990
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from __future__ import annotations

from pathlib import Path
from typing import Literal

import click

__all__ = ["cli_wrapper"]

DONE_STR = click.style("DONE", fg="green")


@click.group()
def cli() -> None: ...


@cli.command()
@click.option(
    "--model",
    "model_path",
    required=True,
    help="Path to the trained model",
    type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.option(
    "--share/--no-share",
    default=False,
    help="Whether to create a shareable link",
)
def gui(model_path: Path, share: bool) -> None:
    """Launch the Gradio GUI"""
    import os

    from app.gui import launch_gui

    os.environ["MODEL_PATH"] = model_path.as_posix()
    launch_gui(share)


@cli.command()
@click.option(
    "--model",
    "model_path",
    required=True,
    help="Path to the trained model",
    type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.argument("text", nargs=-1)
def predict(model_path: Path, text: list[str]) -> None:
    """Perform sentiment analysis on the provided text.

    Note: Piped input takes precedence over the text argument
    """
    import sys

    import joblib

    text = " ".join(text).strip()
    if not sys.stdin.isatty():
        piped_text = sys.stdin.read().strip()
        text = piped_text or text

    if not text:
        msg = "No text provided"
        raise click.UsageError(msg)

    click.echo("Loading model... ", nl=False)
    model = joblib.load(model_path)
    click.echo(DONE_STR)

    click.echo("Performing sentiment analysis... ", nl=False)
    prediction = model.predict([text])[0]
    if prediction == 0:
        sentiment = click.style("NEGATIVE", fg="red")
    elif prediction == 1:
        sentiment = click.style("POSITIVE", fg="green")
    else:
        sentiment = click.style("NEUTRAL", fg="yellow")
    click.echo(sentiment)


@cli.command()
@click.option(
    "--dataset",
    required=True,
    help="Dataset to train the model on",
    type=click.Choice(["sentiment140", "amazonreviews", "imdb50k"]),
)
@click.option(
    "--model",
    "model_path",
    required=True,
    help="Path to the trained model",
    type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.option(
    "--cv",
    default=5,
    help="Number of cross-validation folds",
    show_default=True,
    type=click.IntRange(1, 50),
)
def evaluate(
    dataset: Literal["sentiment140", "amazonreviews", "imdb50k"],
    model_path: Path,
    cv: int,
) -> None:
    """Evaluate the model on the test dataset"""
    import joblib

    from app.data import load_data
    from app.model import evaluate_model

    click.echo("Loading dataset... ", nl=False)
    text_data, label_data = load_data(dataset)
    click.echo(DONE_STR)

    click.echo("Loading model... ", nl=False)
    model = joblib.load(model_path)
    click.echo(DONE_STR)

    click.echo("Evaluating model... ", nl=False)
    acc_mean, acc_std = evaluate_model(model, text_data, label_data, folds=cv)
    click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")


@cli.command()
@click.option(
    "--dataset",
    required=True,
    help="Dataset to train the model on",
    type=click.Choice(["sentiment140", "amazonreviews", "imdb50k"]),
)
@click.option(
    "--max-features",
    default=20000,
    help="Maximum number of features",
    show_default=True,
    type=click.IntRange(1, None),
)
@click.option(
    "--cv",
    default=5,
    help="Number of cross-validation folds",
    show_default=True,
    type=click.IntRange(1, 50),
)
@click.option(
    "--seed",
    default=42,
    help="Random seed (-1 for random seed)",
    show_default=True,
    type=click.IntRange(-1, None),
)
@click.option(
    "--force",
    is_flag=True,
    help="Overwrite the model file if it already exists",
)
def train(
    dataset: Literal["sentiment140", "amazonreviews", "imdb50k"],
    max_features: int,
    cv: int,
    seed: int,
    force: bool,
) -> None:
    """Train the model on the provided dataset"""
    import joblib

    from app.constants import MODELS_DIR
    from app.data import load_data
    from app.model import create_model, evaluate_model, train_model

    model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
    if model_path.exists() and not force:
        click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True)

    click.echo("Loading dataset... ", nl=False)
    text_data, label_data = load_data(dataset)
    click.echo(DONE_STR)

    click.echo("Creating model... ", nl=False)
    model = create_model(max_features, seed=None if seed == -1 else seed, verbose=True)
    click.echo(DONE_STR)

    click.echo("Training model... ")
    accuracy = train_model(model, text_data, label_data)
    click.echo("Model accuracy: ", nl=False)
    click.secho(f"{accuracy:.2%}", fg="blue")

    click.echo("Model saved to: ", nl=False)
    joblib.dump(model, model_path)
    click.secho(str(model_path), fg="blue")

    click.echo("Evaluating model... ", nl=False)
    acc_mean, acc_std = evaluate_model(model, text_data, label_data, folds=cv)
    click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")


def cli_wrapper() -> None:
    cli(max_content_width=120)


if __name__ == "__main__":
    cli_wrapper()