File size: 4,000 Bytes
773526b
 
 
68b3267
773526b
68b3267
 
773526b
68b3267
773526b
 
68b3267
773526b
 
68b3267
773526b
68b3267
 
773526b
 
 
 
 
68b3267
773526b
68b3267
 
 
773526b
68b3267
 
773526b
68b3267
 
 
773526b
 
 
 
 
 
 
 
 
 
 
 
68b3267
 
 
773526b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b3267
773526b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b3267
773526b
 
 
 
 
 
 
68b3267
773526b
 
 
68b3267
773526b
68b3267
 
 
773526b
68b3267
773526b
68b3267
773526b
 
 
68b3267
773526b
68b3267
773526b
 
 
 
68b3267
 
 
 
773526b
 
68b3267
 
773526b
68b3267
 
773526b
 
68b3267
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("enhanceaiteam/kalpana", torch_dtype=torch.bfloat16).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU(duration=190)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt = prompt, 
        width = width,
        height = height,
        num_inference_steps = num_inference_steps, 
        generator = generator,
        guidance_scale=guidance_scale
    ).images[0] 
    return image, seed
 
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()