File size: 10,825 Bytes
0af19e2 0ed58ab 7bb94f0 0ed58ab 0af19e2 1310984 0af19e2 0ed58ab 1310984 0af19e2 1310984 0af19e2 1310984 0af19e2 0ed58ab 0af19e2 1310984 0af19e2 1310984 0af19e2 1310984 0af19e2 1310984 0398bb7 1310984 0398bb7 1310984 0ed58ab 1310984 0af19e2 1310984 0af19e2 1310984 0af19e2 1310984 0af19e2 1310984 0af19e2 1310984 0af19e2 1310984 0af19e2 1310984 0af19e2 1310984 0af19e2 1310984 0af19e2 0ed58ab 3bcddcc 0ed58ab 0af19e2 0ed58ab 3bcddcc 0af19e2 3bcddcc 0af19e2 3bcddcc 0af19e2 3bcddcc 0af19e2 3bcddcc 26428ec 3bcddcc 0af19e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
from all_models import models
from externalmod import gr_Interface_load, save_image, randomize_seed
import asyncio
import os
from threading import RLock
from datetime import datetime
preSetPrompt = "High fashion studio foto shoot. tall slender 18+ caucasian woman. gorgeous face. photorealistic. f1.4"
negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness"
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
def get_current_time():
return datetime.now().strftime("%y-%m-%d %H:%M:%S")
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load:
try:
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
except Exception as error:
print(error)
m = gr.Interface(lambda: None, ['text'], ['image'])
models_load[model] = m
load_fn(models)
num_models = 6
max_images = 6
inference_timeout = 400
default_models = models[:num_models]
MAX_SEED = 2**32 - 1
def extend_choices(choices):
return choices[:num_models] + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
def random_choices():
import random
random.seed()
return random.choices(models, k=num_models)
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
kwargs = {"height": height if height > 0 else None, "width": width if width > 0 else None,
"num_inference_steps": steps if steps > 0 else None, "guidance_scale": cfg if cfg > 0 else None}
if seed == -1:
kwargs["seed"] = randomize_seed()
else:
kwargs["seed"] = seed
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
try:
result = await asyncio.wait_for(task, timeout=timeout)
except asyncio.TimeoutError as e:
print(f"Task timed out: {model_str}")
task.cancel()
result = None
except Exception as e:
print(f"Error generating image: {model_str} - {e}")
task.cancel()
result = None
if result and not isinstance(result, tuple):
png_path = f"{model_str.replace('/', '_')}_{get_current_time()}_{kwargs['seed']}.png"
with lock:
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, kwargs["seed"])
return image
return None
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
loop = asyncio.new_event_loop()
try:
result = loop.run_until_complete(infer(model_str, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(f"Error generating image: {e}")
result = None
raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
finally:
loop.close()
return result
def add_gallery(image, model_str, gallery):
if image is not None:
gallery = [(image, model_str)] + gallery[:5] # Keep only the latest 6 images
return gallery
# Interface Layout
CSS = """
.gradio-container { max-width: 1200px; margin: 0 auto; }
.output { width: 112px; height: 112px; }
.gallery { min-width: 512px; min-height: 512px; }
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
with gr.Blocks(fill_width=True, css=CSS) as demo:
gr.HTML("")
with gr.Tab('6 Models'):
with gr.Column(scale=2):
with gr.Group():
txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
with gr.Accordion("Advanced", open=False, visible=True):
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
seed_rand.click(randomize_seed, None, [seed], queue=False)
with gr.Row():
gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3)
random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
gr.Markdown("", elem_classes="guide")
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
interactive=False, width=112, height=112, show_share_button=False, format="png",
visible=True) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
with gr.Column(scale=2):
gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
interactive=False, show_share_button=False, container=True, format="png",
preview=True, object_fit="cover", columns=2, rows=2)
# Inside the `gr.Blocks` context where the components are defined:
for i, o in enumerate(output):
# Ensure event handler is inside `gr.Blocks`
num_images.change(
lambda num_images, i=i: gr.update(visible=(i < num_images)), # `i` corresponds to the index of the image
[num_images], # Only num_images needs to be an input
o, # Outputs the updated visibility of the image `o`
queue=False
)
# Image generation function
gen_event2 = gr.on(
triggers=[gen_button.click, txt_input.submit],
fn=gen_fn,
inputs=[i, num_images, model_choice2, txt_input, neg_input, height, width, steps, cfg, seed],
outputs=[o]
)
# Update gallery when a new image is generated
o.change(add_gallery, [o, model_choice2, gallery], [gallery])
# Model selection and updating outputs
with gr.Column(scale=4):
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
random_button.click(random_choices, None, model_choice)
# Single model section
with gr.Tab('Single model'):
with gr.Column(scale=2):
model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0])
with gr.Group():
txt_input2 = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
neg_input2 = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
with gr.Accordion("Advanced", open=False, visible=True):
with gr.Row():
width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand2 = gr.Button("Randomize Seed", size="sm", variant="secondary")
seed_rand2.click(randomize_seed, None, [seed2], queue=False)
num_images2 = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
with gr.Row():
gen_button2 = gr.Button('Let the machine hallucinate', variant='primary', scale=2)
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
output2 = [gr.Image(label='', show_download_button=True, elem_classes="output",
interactive=False, width=112, height=112, visible=True, format="png",
show_share_button=False, show_label=False) for _ in range(max_images)]
with gr.Column(scale=2):
gallery2 = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
interactive=False, show_share_button=True, container=True, format="png",
preview=True, object_fit="cover", columns=2, rows=2)
for i, o in enumerate(output2):
img_i = gr.Number(i, visible=False)
num_images2.change(lambda i, n: gr.update(visible=(i < n)), [img_i, num_images2], o, queue=False)
gen_event2 = gr.on(
triggers=[gen_button2.click, txt_input2.submit],
fn=gen_fn,
inputs=[img_i, num_images2, model_choice2, txt_input2, neg_input2, height2, width2, steps2, cfg2, seed2],
outputs=[o]
)
o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])
demo.launch(show_api=False, max_threads=400)
|