File size: 11,215 Bytes
0af19e2
 
2933b12
0b45526
0af19e2
 
 
0ed58ab
 
2933b12
0ed58ab
 
0af19e2
1db75d1
0b45526
0af19e2
0ed58ab
96a7b08
024f666
96a7b08
0af19e2
 
 
 
 
96a7b08
0af19e2
 
 
 
 
96a7b08
 
0b45526
2c1071a
 
76d3f59
f0f9abd
0b45526
 
 
 
0af19e2
96a7b08
 
0b45526
0af19e2
96a7b08
 
 
0b45526
0af19e2
 
 
 
 
0b45526
0af19e2
96a7b08
 
 
 
 
f994e4e
0398bb7
96a7b08
 
 
f994e4e
96a7b08
0ed58ab
96a7b08
0af19e2
 
 
96a7b08
c473977
96a7b08
0af19e2
96a7b08
0af19e2
96a7b08
c473977
96a7b08
0af19e2
96a7b08
 
0af19e2
96a7b08
ec32dbe
0af19e2
 
 
 
 
96a7b08
4368fa0
0af19e2
bdfed08
c473977
bdfed08
0af19e2
 
 
bdfed08
0af19e2
0b45526
0af19e2
96a7b08
 
 
0af19e2
 
843706d
54b0d06
 
f0197f6
25b4b13
2f228e5
 
 
e49112f
 
 
25b4b13
 
 
 
 
 
 
 
f0197f6
25b4b13
 
54b0d06
25b4b13
 
 
 
f0197f6
25b4b13
54b0d06
25b4b13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0197f6
25b4b13
 
54b0d06
b6673c1
25b4b13
 
 
f0197f6
2f228e5
f0197f6
2f228e5
 
 
 
 
 
 
 
 
f0197f6
 
 
 
 
 
 
2f228e5
 
 
 
 
3c81b49
 
 
 
 
 
 
 
 
 
e49112f
 
f0197f6
0f4b77b
e49112f
 
 
 
 
 
 
 
 
3c81b49
0f4b77b
25b4b13
0f4b77b
 
54b0d06
 
96a7b08
 
c8c6184
 
23b0a5d
 
 
6673991
 
23b0a5d
 
 
6673991
 
3c3755b
 
 
560ebd8
 
db376ef
560ebd8
 
db376ef
560ebd8
 
c8c6184
 
 
843706d
6adf4c8
 
 
 
 
3bcddcc
6adf4c8
 
3bcddcc
6adf4c8
 
 
 
 
 
3c81b49
6adf4c8
 
 
 
 
5bb4fe7
6adf4c8
 
1d0e958
f0f9abd
1d0e958
 
 
 
 
6adf4c8
 
 
 
 
 
26428ec
96a7b08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import gradio as gr
from all_models import models
from prompt import thePrompt
from externalmod import gr_Interface_load, save_image, randomize_seed
import asyncio
import os
from threading import RLock
from datetime import datetime

preSetPrompt = thePrompt
negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness"

lock = RLock()

HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.

def get_current_time():
    now = datetime.now()
    current_time = now.strftime("%y-%m-%d %H:%M:%S")
    return current_time

def load_fn(models):
    global models_load
    models_load = {}
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)

num_models = 12
max_images = num_models
inference_timeout = 400
default_models = models[:num_models]
MAX_SEED = 2**32-1

def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]


def random_choices():
    import random
    random.seed()
    return random.choices(models, k=num_models)


async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
    kwargs = {}
    if height > 0: kwargs["height"] = height
    if width > 0: kwargs["width"] = width
    if steps > 0: kwargs["num_inference_steps"] = steps
    if cfg > 0: cfg = kwargs["guidance_scale"] = cfg

    if seed == -1:
        theSeed = randomize_seed()
    else: 
        theSeed = seed
    kwargs["seed"] = theSeed
        
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except asyncio.TimeoutError as e:
        print(e)
        print(f"infer: Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
        raise Exception(f"Task timed out: {model_str}") from e
    except Exception as e:
        print(e)
        print(f"infer: exception: {model_str}")
        if not task.done(): task.cancel()
        result = None
        raise Exception() from e
    if task.done() and result is not None and not isinstance(result, tuple):
        with lock:
            png_path =  model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png"
            image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, theSeed)
        return image
    return None

def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"gen_fn: Task aborted: {model_str}")
        result = None
        raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
    finally:
        loop.close()
    return result


def add_gallery(image, model_str, gallery):
    if gallery is None: gallery = []
    with lock:
        if image is not None: gallery.insert(0, (image, model_str))
    return gallery

JS="""
<script>

// Function to monitor image src changes and automatically download the image
function monitorImageSrcChanges() {
  // Set of recently downloaded image URLs to avoid re-triggering the download
  const downloadedImages = new Set();

  // Track the last time a download occurred (in milliseconds)
  let lastDownloadTime = Date.now();

  // Create a MutationObserver instance
  const observer = new MutationObserver((mutationsList, observer) => {
    // Loop through all mutations
    mutationsList.forEach(mutation => {
      // Check if any new image tags were added
      if (mutation.type === 'childList') {
        mutation.addedNodes.forEach(node => {
          if (node.nodeName === 'IMG') {
            // New image added, monitor its src and download it
            observeImageSrc(node);
          }
        });
      }
      // Check if an image src attribute has changed
      if (mutation.type === 'attributes' && mutation.attributeName === 'src') {
        console.log('Image src changed:', mutation.target.src);
        downloadImage(mutation.target.src);
      }
    });
  });

  // Options for the observer (what to monitor)
  const config = { childList: true, attributes: true, subtree: true, attributeFilter: ['src'] };

  // Start observing the document body (or any specific element)
  observer.observe(document.body, config);

  // Initial monitoring of images already in the DOM
  document.querySelectorAll('img').forEach(img => {
    observeImageSrc(img);
  });

  // Function to observe an image's src attribute changes
  function observeImageSrc(img) {
    const srcObserver = new MutationObserver(mutations => {
      mutations.forEach(mutation => {
        if (mutation.type === 'attributes' && mutation.attributeName === 'src') {
          console.log('Image src changed:', img.src);
          downloadImage(img.src);
        }
      });
    });

    // Start observing src attribute changes of the image
    srcObserver.observe(img, { attributes: true, attributeFilter: ['src'] });
  }

  // Function to download an image automatically with a cooldown to prevent multiple downloads
  function downloadImage(src) {
    // Check if the image has been downloaded recently
    if (downloadedImages.has(src)) {
      return; // Prevent duplicate downloads
    }

    // Add the image src to the set of downloaded images
    downloadedImages.add(src);

    // Trigger the download
    const link = document.createElement('a');
    link.href = src;
    link.download = src.split('/').pop(); // Use the file name from the URL (last part of the src)
    link.style.display = 'none'; // Hide the link
    document.body.appendChild(link);
    link.click(); // Trigger the download
    document.body.removeChild(link); // Clean up the DOM by removing the link after download

    // Set a cooldown to allow the download to be triggered again after a delay (e.g., 500ms)
    setTimeout(() => {
      downloadedImages.delete(src); // Remove from the set after the cooldown
    }, 500); // 500ms cooldown (adjust as needed)

    // After download is triggered, click the button with id "TheButt"
    setTimeout(() => {
      const button = document.getElementById('TheButt');
      if (button) {
        button.click(); // Click the button
      } else {
        console.error('Button with id "TheButt" not found!');
      }
    }, 500); // Adjust the timeout if needed to make sure the download starts before clicking
    // Update the last download time
    lastDownloadTime = Date.now();
  }

  // Function to check for inactivity and reload the page if no download happened in 400 seconds
  setInterval(() => {
    const currentTime = Date.now();
    if (currentTime - lastDownloadTime >= 400000) { // 400,000ms = 400 seconds
      console.log("No download detected for 400 seconds, reloading the page...");
      location.reload(); // Reload the page
    }
  }, 1000); // Check every second
}

window.addEventListener('load', () => {
    monitorImageSrcChanges();
    console.log("Yo");
});
    
</script>
"""

CSS="""
<style>
    .image-monitor {
        border:1px solid red;
    }

    /*
    .svelte-1pijsyv{
        border:1px solid green;
    }
    */
    
    .gallery-container{
        max-height: 512px;
    }

    .butt{
        background-color:#2b4764 !important
    }
    .butt:hover{
        background-color:#3a6c9f !important;
    }
    
</style>
"""

with gr.Blocks(head=CSS + JS) as demo:
    with gr.Column(scale=2):
        with gr.Group():
            txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
            neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
            with gr.Accordion("Advanced", open=False, visible=True):
                with gr.Row():
                    width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                with gr.Row():
                    steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                    cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                    seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                    seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                    seed_rand.click(randomize_seed, None, [seed], queue=False)
        with gr.Row():
            gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"], elem_id=["TheButt"])
            random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)

    with gr.Column(scale=1):
        with gr.Group():
            with gr.Row():
                output = [gr.Image(label=m, show_download_button=True, interactive=False, width=112, height=112, show_share_button=False, format="png", visible=True) for m in default_models]
                current_models = [gr.Textbox(m, visible=False) for m in default_models]

    with gr.Column(scale=2):
        gallery = gr.Gallery(label="Output", visible=False, show_download_button=True,interactive=False, show_share_button=False, container=True, format="png", preview=True, object_fit="cover", columns=2, rows=2) 

    for m, o in zip(current_models, output):
        gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o], concurrency_limit=None, queue=False)
        # o.change(add_gallery, [o, m, gallery], [gallery])

    with gr.Column(scale=4):
        with gr.Accordion('Model selection'):
            model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
            model_choice.change(update_imgbox, model_choice, output)
            model_choice.change(extend_choices, model_choice, current_models)
            random_button.click(random_choices, None, model_choice)

demo.launch(show_api=False, max_threads=400)