Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
with open("class_names.txt", "r") as f: | |
class_names = [food_name.strip() for food_name in f] | |
effnetb2, effnetb2_transforms = create_effnetb2_model() | |
effnetb2.load_state_dict( | |
torch.load( | |
f="effnetb2_food101_complete_dataset.pth", | |
map_location=torch.device("cpu"), | |
weights_only=True | |
) | |
) | |
def predict(img) -> Tuple[Dict, float]: | |
start_time = timer() | |
img = effnetb2_transforms(img).unsqueeze(0) | |
effnetb2.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# create a prediction label in gradio format | |
pred_labels_and_probs = {class_names[i]: float( | |
pred_probs[0][i]) for i in range(len(class_names))} | |
pred_time = round(timer() - start_time) | |
return pred_labels_and_probs, pred_time | |
# Create title, description and article strings | |
title = "FoodVision Big ππ" | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/Victoran0/foodvision-bigdataset/demos/foodvision_big/class_names.txt).." | |
article = "You can find the full source code at (https://github.com/Victoran0/foodvision-bigdataset)." | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create Gradio Interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=5, label="Predictions"), | |
gr.Number(label="Prediction time (s)") | |
], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article | |
) | |
demo.launch() | |