Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
from torch import nn | |
def create_effnetb2_model(num_classes: int = 101, seed: int = 42): | |
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
effnetb2_transforms = weights.transforms() | |
effnetb2 = torchvision.models.efficientnet_b2(weights=weights) | |
for param in effnetb2.parameters(): | |
param.requires_grad = False | |
torch.manual_seed(seed=seed) | |
effnetb2.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=1408, out_features=num_classes) | |
) | |
return effnetb2, effnetb2_transforms | |