File size: 22,282 Bytes
d8b7b87
 
 
 
 
 
06bd6d6
d8b7b87
 
 
4aaae54
4dbb811
 
 
 
 
 
 
 
 
d8b7b87
667243e
 
 
 
26e0db5
3bc2e7c
 
409d3df
 
26e0db5
667243e
 
 
 
 
 
 
d8b7b87
 
 
 
 
 
 
 
 
 
3bc2e7c
 
 
bd55508
 
3bc2e7c
 
bd55508
 
d994215
d8b7b87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d994215
d8b7b87
 
d994215
d8b7b87
 
d994215
d8b7b87
 
d994215
d8b7b87
 
 
d994215
d8b7b87
8bd631d
f1e58f7
8bd631d
84d7e55
 
 
308366d
4e653b1
 
 
 
 
308366d
00b64c9
f1e58f7
 
 
ecfb74f
 
f1e58f7
84d7e55
ecfb74f
8bd631d
ecfb74f
 
9994261
ecfb74f
9994261
ecfb74f
 
9994261
ecfb74f
84d7e55
ecfb74f
84d7e55
 
8bd631d
ecfb74f
 
84d7e55
ecfb74f
d994215
26e0db5
d8b7b87
d994215
d8b7b87
d994215
 
 
 
8bd631d
84d7e55
8bd631d
 
d994215
84d7e55
d994215
8bd631d
d994215
b1e3b03
 
d994215
8bd631d
d994215
 
 
 
 
 
 
 
 
6fac153
d8b7b87
6fac153
d8b7b87
3bc2e7c
d8b7b87
 
 
 
 
 
 
 
3bc2e7c
 
 
d8b7b87
 
3a5bd72
d8b7b87
 
 
 
 
 
3bc2e7c
d8b7b87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc2e7c
 
 
 
 
 
 
d8b7b87
 
3bc2e7c
 
 
 
 
 
 
d8b7b87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bd631d
d8b7b87
8bd631d
d8b7b87
 
8bd631d
d8b7b87
8bd631d
d8b7b87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fac153
d8b7b87
 
 
 
 
 
 
 
cf24fe3
 
 
 
 
 
 
 
 
 
 
 
 
8dba865
cf24fe3
d8b7b87
 
3c5c7f9
 
 
 
8dba865
3c5c7f9
 
8dba865
3c5c7f9
 
8dba865
3c5c7f9
 
 
 
 
 
 
 
cf24fe3
3c5c7f9
 
 
 
8dba865
 
 
3c5c7f9
d8b7b87
 
3bc2e7c
 
 
 
 
 
 
d8b7b87
 
3bc2e7c
b6eccd9
3bc2e7c
3c5c7f9
3bc2e7c
3c5c7f9
3bc2e7c
3c5c7f9
3bc2e7c
b6eccd9
3bc2e7c
3c5c7f9
 
 
b6eccd9
3c5c7f9
 
 
 
3bc2e7c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# libraries
import os
from huggingface_hub import InferenceClient
from dotenv import load_dotenv
import json
import re
#import easyocr
from PIL import Image, ImageEnhance, ImageDraw
import cv2
import numpy as np
from paddleocr import PaddleOCR
import logging

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    handlers=[
        logging.StreamHandler()  # Remove FileHandler and log only to the console
    ]
)

# Set the PaddleOCR home directory to a writable location

os.environ['PADDLEOCR_HOME'] = '/tmp/.paddleocr' 

RESULT_FOLDER = 'static/results/'
JSON_FOLDER = 'static/json/'

if not os.path.exists('/tmp/.paddleocr'):
    os.makedirs(RESULT_FOLDER, exist_ok=True)

# Check if PaddleOCR home directory is writable
if not os.path.exists('/tmp/.paddleocr'):
    os.makedirs('/tmp/.paddleocr', exist_ok=True)
    logging.info("Created PaddleOCR home directory.")
else:
    logging.info("PaddleOCR home directory exists.")

# Load environment variables from .env file
load_dotenv()

# Authenticate with Hugging Face
HFT = os.getenv('HF_TOKEN')

# Initialize the InferenceClient
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3", token=HFT)

def load_image(image_path):
    ext = os.path.splitext(image_path)[1].lower()
    if ext in ['.png', '.jpg', '.jpeg', '.webp', '.tiff']:
        image = cv2.imread(image_path)
        if image is None:
            raise ValueError(f"Failed to load image from {image_path}. The file may be corrupted or unreadable.")
        return image
    else:
        raise ValueError(f"Unsupported image format: {ext}")   
        
# Function for upscaling image using OpenCV's INTER_CUBIC
def upscale_image(image, scale=2):
    height, width = image.shape[:2]
    upscaled_image = cv2.resize(image, (width * scale, height * scale), interpolation=cv2.INTER_CUBIC)
    return upscaled_image

# Function to denoise the image (reduce noise)
def reduce_noise(image):
    return cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)

# Function to sharpen the image
def sharpen_image(image):
    kernel = np.array([[0, -1, 0],
                       [-1, 5, -1],
                       [0, -1, 0]])
    sharpened_image = cv2.filter2D(image, -1, kernel)
    return sharpened_image

# Function to increase contrast and enhance details without changing color
def enhance_image(image):
    pil_img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    enhancer = ImageEnhance.Contrast(pil_img)
    enhanced_image = enhancer.enhance(1.5)
    enhanced_image_bgr = cv2.cvtColor(np.array(enhanced_image), cv2.COLOR_RGB2BGR)
    return enhanced_image_bgr

# Complete function to process image
def process_image(image_path, scale=2):
    # Load the image
    image = load_image(image_path)

    # Upscale the image
    upscaled_image = upscale_image(image, scale)

    # Reduce noise
    denoised_image = reduce_noise(upscaled_image)

    # Sharpen the image
    sharpened_image = sharpen_image(denoised_image)

    # Enhance the image contrast and details without changing color
    final_image = enhance_image(sharpened_image)

    return final_image

# Function for OCR with PaddleOCR, returning both text and bounding boxes
def ocr_with_paddle(img):
    final_text = ''
    boxes = []

    # Initialize PaddleOCR
    ocr = PaddleOCR(
        lang='en', 
        use_angle_cls=True,
        det_model_dir=os.path.join(os.environ['PADDLEOCR_HOME'], 'whl/det'),
        rec_model_dir=os.path.join(os.environ['PADDLEOCR_HOME'], 'whl/rec/en/en_PP-OCRv4_rec_infer'),
        cls_model_dir=os.path.join(os.environ['PADDLEOCR_HOME'], 'whl/cls/ch_ppocr_mobile_v2.0_cls_infer')
    )

    # Check if img is a file path or an image array
    if isinstance(img, str):
        img = cv2.imread(img)

    # Perform OCR
    result = ocr.ocr(img)

    # Iterate through the OCR result
    for line in result[0]:
        # Check how many values are returned (2 or 3) and unpack accordingly
        if len(line) == 3:
            box, (text, confidence), _ = line  # When 3 values are returned
        elif len(line) == 2:
            box, (text, confidence) = line  # When only 2 values are returned

        # Store the recognized text and bounding boxes
        final_text += ' ' + text  # Extract the text from the tuple
        boxes.append(box)

        # Draw the bounding box
        points = [(int(point[0]), int(point[1])) for point in box]
        cv2.polylines(img, [np.array(points)], isClosed=True, color=(0, 255, 0), thickness=2)

    # Store the image with bounding boxes in a variable
    img_with_boxes = img

    return final_text, img_with_boxes

def extract_text_from_images(image_paths):
    all_extracted_texts = {}
    all_extracted_imgs = {}
    for image_path in image_paths:
        try:
            # Enhance the image before OCR        
            enhanced_image = process_image(image_path, scale=2)

            # Perform OCR on the enhanced image and get boxes
            result, img_with_boxes = ocr_with_paddle(enhanced_image)

            # Draw bounding boxes on the processed image
            img_result = Image.fromarray(enhanced_image)
            #img_with_boxes = draw_boxes(img_result, boxes)

            # Save the image with boxes
            result_image_path = os.path.join(RESULT_FOLDER, f'result_{os.path.basename(image_path)}')
            #img_with_boxes.save(result_image_path)
            cv2.imwrite(result_image_path, img_with_boxes)

            # Store the text and image result paths
            all_extracted_texts[image_path] = result
            all_extracted_imgs[image_path] = result_image_path
        except ValueError as ve:
            print(f"Error processing image {image_path}: {ve}")
            continue  # Continue to the next image if there's an error

    # Convert to JSON-compatible structure
    all_extracted_imgs_json = {str(k): str(v) for k, v in all_extracted_imgs.items()}
    return all_extracted_texts, all_extracted_imgs_json

# Function to call the Gemma model and process the output as Json 
def Data_Extractor(data, client=client):
    text = f'''Act as a  Text extractor for the following text given in text: {data} 
    Extract text in the following output JSON string:
    {{
    "Name": ["Identify and Extract All the person's name from the text."],
    "Designation": ["Extract All the designation or job title mentioned in the text."],
    "Company": ["Extract All the company or organization name if mentioned."],
    "Contact": ["Extract All phone number, including country codes if present."],
    "Address": ["Extract All the full postal address or location mentioned in the text."],
    "Email": ["Identify and Extract All valid email addresses mentioned in the text else 'Not found'."],
    "Link": ["Identify and Extract any website URLs or social media links present in the text."]
    }}
    
    Output:    
    '''
    # Call the API for inference
    response = client.text_generation(text, max_new_tokens=1000)#, temperature=0.4, top_k=50, top_p=0.9, repetition_penalty=1.2)
    
    print("parse in text ---:",response)

    # Convert the response text to JSON
    try:
        json_data = json.loads(response)
        print("Json_data-------------->",json_data)
        return json_data
    except json.JSONDecodeError as e:
        return {"error": f"Error decoding JSON: {e}"}   

# For have text compatible to the llm
def json_to_llm_str(textJson):
    str=''
    for file,item in textJson.items():
      str+=item + ' '
    return str

# Define the RE for extracting the contact details like number, mail , portfolio, website etc 
def extract_contact_details(text):
    # Regex patterns
    # Phone numbers with at least 5 digits in any segment 
    combined_phone_regex = re.compile(r'''
    (?: 
        #(?:(?:\+91[-.\s]?)?\d{5}[-.\s]?\d{5})|(?:\+?\d{1,3})?[-.\s()]?\d{5,}[-.\s()]?\d{5,}[-.\s()]?\d{1,9} | /^[\.-)( ]*([0-9]{3})[\.-)( ]*([0-9]{3})[\.-)( ]*([0-9]{4})$/ |
        \+1\s\(\d{3}\)\s\d{3}-\d{4} |               # USA/Canada Intl +1 (XXX) XXX-XXXX
        \(\d{3}\)\s\d{3}-\d{4} |                    # USA/Canada STD (XXX) XXX-XXXX
        \(\d{3}\)\s\d{3}\s\d{4} |                   # USA/Canada (XXX) XXX XXXX
        \(\d{3}\)\s\d{3}\s\d{3} |                   # USA/Canada (XXX) XXX XXX
        \+1\d{10} |                                 # +1 XXXXXXXXXX
        \d{10} |                                    # XXXXXXXXXX
        \+44\s\d{4}\s\d{6} |                        # UK Intl +44 XXXX XXXXXX
        \+44\s\d{3}\s\d{3}\s\d{4} |                 # UK Intl +44 XXX XXX XXXX
        0\d{4}\s\d{6} |                             # UK STD 0XXXX XXXXXX
        0\d{3}\s\d{3}\s\d{4} |                      # UK STD 0XXX XXX XXXX
        \+44\d{10} |                                # +44 XXXXXXXXXX
        0\d{10} |                                   # 0XXXXXXXXXX
        \+61\s\d\s\d{4}\s\d{4} |                    # Australia Intl +61 X XXXX XXXX
        0\d\s\d{4}\s\d{4} |                         # Australia STD 0X XXXX XXXX
        \+61\d{9} |                                 # +61 XXXXXXXXX
        0\d{9} |                                    # 0XXXXXXXXX
        \+91\s\d{5}-\d{5} |                         # India Intl +91 XXXXX-XXXXX
        \+91\s\d{4}-\d{6} |                         # India Intl +91 XXXX-XXXXXX
        \+91\s\d{10} |                              # India Intl +91 XXXXXXXXXX
        \+91\s\d{3}\s\d{3}\s\d{4} |                 # India Intl +91 XXX XXX XXXX
        \+91\s\d{3}-\d{3}-\d{4} |                   # India Intl +91 XXX-XXX-XXXX
        \+91\s\d{2}\s\d{4}\s\d{4} |                 # India Intl +91 XX XXXX XXXX
        \+91\s\d{2}-\d{4}-\d{4} |                   # India Intl +91 XX-XXXX-XXXX
        \+91\s\d{5}\s\d{5} |                        # India Intl +91 XXXXX XXXXX 
        \d{5}\s\d{5} |                              # India XXXXX XXXXX 
        \d{5}-\d{5} |                               # India XXXXX-XXXXX 
        0\d{2}-\d{7} |                              # India STD 0XX-XXXXXXX
        \+91\d{10} |                                # +91 XXXXXXXXXX
        \d{10} |                                    # XXXXXXXXXX   # Here is the regex to handle all possible combination of the contact
        \d{6}-\d{4} |                               # XXXXXX-XXXX
        \d{4}-\d{6} |                               # XXXX-XXXXXX
        \d{3}\s\d{3}\s\d{4} |                       # XXX XXX XXXX
        \d{3}-\d{3}-\d{4} |                         # XXX-XXX-XXXX
        \d{4}\s\d{3}\s\d{3} |                       # XXXX XXX XXX
        \d{4}-\d{3}-\d{3} |                         # XXXX-XXX-XXX #-----
        \+49\s\d{4}\s\d{8} |                        # Germany Intl +49 XXXX XXXXXXXX
        \+49\s\d{3}\s\d{7} |                        # Germany Intl +49 XXX XXXXXXX
        0\d{3}\s\d{8} |                             # Germany STD 0XXX XXXXXXXX
        \+49\d{12} |                                # +49 XXXXXXXXXXXX
        \+49\d{10} |                                # +49 XXXXXXXXXX
        0\d{11} |                                   # 0XXXXXXXXXXX
        \+86\s\d{3}\s\d{4}\s\d{4} |                 # China Intl +86 XXX XXXX XXXX
        0\d{3}\s\d{4}\s\d{4} |                      # China STD 0XXX XXXX XXXX
        \+86\d{11} |                                # +86 XXXXXXXXXXX
        \+81\s\d\s\d{4}\s\d{4} |                    # Japan Intl +81 X XXXX XXXX
        \+81\s\d{2}\s\d{4}\s\d{4} |                 # Japan Intl +81 XX XXXX XXXX
        0\d\s\d{4}\s\d{4} |                         # Japan STD 0X XXXX XXXX
        \+81\d{10} |                                # +81 XXXXXXXXXX
        \+81\d{9} |                                 # +81 XXXXXXXXX
        0\d{9} |                                    # 0XXXXXXXXX
        \+55\s\d{2}\s\d{5}-\d{4} |                  # Brazil Intl +55 XX XXXXX-XXXX
        \+55\s\d{2}\s\d{4}-\d{4} |                  # Brazil Intl +55 XX XXXX-XXXX
        0\d{2}\s\d{4}\s\d{4} |                      # Brazil STD 0XX XXXX XXXX
        \+55\d{11} |                                # +55 XXXXXXXXXXX
        \+55\d{10} |                                # +55 XXXXXXXXXX
        0\d{10} |                                   # 0XXXXXXXXXX
        \+33\s\d\s\d{2}\s\d{2}\s\d{2}\s\d{2} |      # France Intl +33 X XX XX XX XX
        0\d\s\d{2}\s\d{2}\s\d{2}\s\d{2} |           # France STD 0X XX XX XX XX
        \+33\d{9} |                                 # +33 XXXXXXXXX
        0\d{9} |                                    # 0XXXXXXXXX
        \+7\s\d{3}\s\d{3}-\d{2}-\d{2} |             # Russia Intl +7 XXX XXX-XX-XX
        8\s\d{3}\s\d{3}-\d{2}-\d{2} |               # Russia STD 8 XXX XXX-XX-XX
        \+7\d{10} |                                 # +7 XXXXXXXXXX
        8\d{10} |                                   # 8 XXXXXXXXXX
        \+27\s\d{2}\s\d{3}\s\d{4} |                 # South Africa Intl +27 XX XXX XXXX
        0\d{2}\s\d{3}\s\d{4} |                      # South Africa STD 0XX XXX XXXX
        \+27\d{9} |                                 # +27 XXXXXXXXX
        0\d{9} |                                    # 0XXXXXXXXX
        \+52\s\d{3}\s\d{3}\s\d{4} |                 # Mexico Intl +52 XXX XXX XXXX
        \+52\s\d{2}\s\d{4}\s\d{4} |                 # Mexico Intl +52 XX XXXX XXXX
        01\s\d{3}\s\d{4} |                          # Mexico STD 01 XXX XXXX
        \+52\d{10} |                                # +52 XXXXXXXXXX
        01\d{7} |                                   # 01 XXXXXXX
        \+234\s\d{3}\s\d{3}\s\d{4} |                # Nigeria Intl +234 XXX XXX XXXX
        0\d{3}\s\d{3}\s\d{4} |                      # Nigeria STD 0XXX XXX XXXX
        \+234\d{10} |                               # +234 XXXXXXXXXX
        0\d{10} |                                   # 0XXXXXXXXXX
        \+971\s\d\s\d{3}\s\d{4} |                   # UAE Intl +971 X XXX XXXX
        0\d\s\d{3}\s\d{4} |                         # UAE STD 0X XXX XXXX
        \+971\d{8} |                                # +971 XXXXXXXX
        0\d{8} |                                    # 0XXXXXXXX
        \+54\s9\s\d{3}\s\d{3}\s\d{4} |              # Argentina Intl +54 9 XXX XXX XXXX
        \+54\s\d{1}\s\d{4}\s\d{4} |                 # Argentina Intl +54 X XXXX XXXX
        0\d{3}\s\d{4} |                             # Argentina STD 0XXX XXXX
        \+54\d{10} |                                # +54 9 XXXXXXXXXX
        \+54\d{9} |                                 # +54 XXXXXXXXX
        0\d{7} |                                    # 0XXXXXXX
        \+966\s\d\s\d{3}\s\d{4} |                   # Saudi Intl +966 X XXX XXXX
        0\d\s\d{3}\s\d{4} |                         # Saudi STD 0X XXX XXXX
        \+966\d{8} |                                # +966 XXXXXXXX
        0\d{8} |                                    # 0XXXXXXXX
        \+1\d{10} |                                 # +1 XXXXXXXXXX
        \+1\s\d{3}\s\d{3}\s\d{4} |                  # +1 XXX XXX XXXX
        \d{5}\s\d{5} |                              # XXXXX XXXXX                              
        \d{10} |                                    # XXXXXXXXXX
        \+44\d{10} |                                # +44 XXXXXXXXXX
        0\d{10} |                                   # 0XXXXXXXXXX
        \+61\d{9} |                                 # +61 XXXXXXXXX
        0\d{9} |                                    # 0XXXXXXXXX
        \+91\d{10} |                                # +91 XXXXXXXXXX
        \+49\d{12} |                                # +49 XXXXXXXXXXXX
        \+49\d{10} |                                # +49 XXXXXXXXXX
        0\d{11} |                                   # 0XXXXXXXXXXX
        \+86\d{11} |                                # +86 XXXXXXXXXXX
        \+81\d{10} |                                # +81 XXXXXXXXXX
        \+81\d{9} |                                 # +81 XXXXXXXXX
        0\d{9} |                                    # 0XXXXXXXXX
        \+55\d{11} |                                # +55 XXXXXXXXXXX
        \+55\d{10} |                                # +55 XXXXXXXXXX
        0\d{10} |                                   # 0XXXXXXXXXX
        \+33\d{9} |                                 # +33 XXXXXXXXX
        0\d{9} |                                    # 0XXXXXXXXX
        \+7\d{10} |                                 # +7 XXXXXXXXXX
        8\d{10} |                                   # 8 XXXXXXXXXX
        \+27\d{9} |                                 # +27 XXXXXXXXX
        0\d{9} |                                    # 0XXXXXXXXX (South Africa STD)
        \+52\d{10} |                                # +52 XXXXXXXXXX
        01\d{7} |                                   # 01 XXXXXXX
        \+234\d{10} |                               # +234 XXXXXXXXXX
        0\d{10} |                                   # 0XXXXXXXXXX
        \+971\d{8} |                                # +971 XXXXXXXX
        0\d{8} |                                    # 0XXXXXXXX
        \+54\s9\s\d{10} |                           # +54 9 XXXXXXXXXX
        \+54\d{9} |                                 # +54 XXXXXXXXX
        0\d{7} |                                    # 0XXXXXXX
        \+966\d{8} |                                # +966 XXXXXXXX
        0\d{8}                                      # 0XXXXXXXX
        \+\d{3}-\d{3}-\d{4}
    )  

    ''',re.VERBOSE)
    
    # Email regex
    email_regex = re.compile(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b')
    
    # URL and links regex, updated to avoid conflicts with email domains
    link_regex = re.compile(r'\b(?:https?:\/\/)?(?:www\.)[a-zA-Z0-9-]+\.(?:com|co\.in|co|io|org|net|edu|gov|mil|int|uk|us|in|de|au|app|tech|xyz|info|biz|fr|dev)\b')
    
    # Find all matches in the text
    phone_numbers = [num for num in combined_phone_regex.findall(text) if len(num) >= 5]
    
    emails = email_regex.findall(text)

    links_RE = [link for link in link_regex.findall(text) if len(link)>=11]
    
    # Remove profile links that might conflict with emails
    links_RE = [link for link in links_RE if not any(email in link for email in emails)]
    
    return {
        "phone_numbers": phone_numbers,
        "emails": emails,
        "links_RE": links_RE
    }  

# preprocessing the data 
def process_extracted_text(extracted_text):
    # Load JSON data
    data = json.dumps(extracted_text, indent=4)
    data = json.loads(data)

    # Create a single dictionary to hold combined results
    combined_results = {
        "phone_numbers": [],
        "emails": [],
        "links_RE": []
    }

    # Process each text entry
    for filename, text in data.items():
        contact_details = extract_contact_details(text)
        # Extend combined results with the details from this file
        combined_results["phone_numbers"].extend(contact_details["phone_numbers"])
        combined_results["emails"].extend(contact_details["emails"])
        combined_results["links_RE"].extend(contact_details["links_RE"])

    # Convert the combined results to JSON
    #combined_results_json = json.dumps(combined_results, indent=4)
    combined_results_json = combined_results

    # Print the final JSON results
    print("Combined contact details in JSON format:")
    print(combined_results_json)

    return combined_results_json 

# Function to remove duplicates (case-insensitive) from each list in the dictionary
def remove_duplicates_case_insensitive(data_dict):
    for key, value_list in data_dict.items():
        seen = set()
        unique_list = []
        
        for item in value_list:
            if item.lower() not in seen:
                unique_list.append(item)  # Add original item (preserving its case)
                seen.add(item.lower())    # Track lowercase version
        
        # Update the dictionary with unique values
        data_dict[key] = unique_list
    return data_dict

# Process the model output for parsed result
def process_resume_data(LLMdata,cont_data,extracted_text):

    # Removing duplicate emails
    unique_emails = []
    for email in cont_data['emails']:
        if not any(email.lower() == existing_email.lower() for existing_email in LLMdata['Email']):
            unique_emails.append(email)
    
    # Removing duplicate links (case insensitive)
    unique_links = []
    for link in cont_data['links_RE']:
        if not any(link.lower() == existing_link.lower() for existing_link in LLMdata['Link']):
            unique_links.append(link)
    
    # Removing duplicate phone numbers
    normalized_contact = [num[-10:] for num in LLMdata['Contact']]
    unique_numbers = []
    for num in cont_data['phone_numbers']:
        if num[-10:] not in normalized_contact:
            unique_numbers.append(num)
       
    # Add unique emails, links, and phone numbers to the original LLMdata
    LLMdata['Email'] += unique_emails
    LLMdata['Link'] += unique_links
    LLMdata['Contact'] += unique_numbers

    # Apply the function to the data
    LLMdata=remove_duplicates_case_insensitive(LLMdata)
        
    # Initialize the processed data dictionary
    processed_data = {            
            "name": [],
            "contact_number": [],
            "Designation":[],
            "email": [],
            "Location": [],
            "Link": [],
            "Company":[],
            "extracted_text": extracted_text
            }
    #LLM
    
    processed_data['name'].extend(LLMdata.get('Name', []))
    #processed_data['contact_number'].extend(LLMdata.get('Contact', []))
    processed_data['Designation'].extend(LLMdata.get('Designation', []))
    #processed_data['email'].extend(LLMdata.get("Email", []))
    processed_data['Location'].extend(LLMdata.get('Address', []))
    #processed_data['Link'].extend(LLMdata.get('Link', []))
    processed_data['Company'].extend(LLMdata.get('Company', []))
    
    #Contact
    #processed_data['email'].extend(cont_data.get("emails", [])) 
    #processed_data['contact_number'].extend(cont_data.get("phone_numbers", []))
    #processed_data['Link'].extend(cont_data.get("links_RE", []))
    
    #New_merge_data
    processed_data['email'].extend(LLMdata['Email']) 
    processed_data['contact_number'].extend(LLMdata['Contact'])
    processed_data['Link'].extend(LLMdata['Link'])
    return processed_data