File size: 4,136 Bytes
9ae46f4 ef3d157 bacf856 9ae46f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import argparse
import os
import torch
import yaml
from tqdm import tqdm
from transformers import get_cosine_schedule_with_warmup
# from model_nested import NerFilteredSemiCRF
from .model import GLiNER
from .modules.run_evaluation import get_for_all_path, sample_train_data
from save_load import save_model, load_model
import json
# train function
def train(model, optimizer, train_data, num_steps=1000, eval_every=100, log_dir="logs", warmup_ratio=0.1,
train_batch_size=8, device='cuda'):
model.train()
# initialize data loaders
train_loader = model.create_dataloader(train_data, batch_size=train_batch_size, shuffle=True)
pbar = tqdm(range(num_steps))
if warmup_ratio < 1:
num_warmup_steps = int(num_steps * warmup_ratio)
else:
num_warmup_steps = int(warmup_ratio)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_steps
)
iter_train_loader = iter(train_loader)
for step in pbar:
try:
x = next(iter_train_loader)
except StopIteration:
iter_train_loader = iter(train_loader)
x = next(iter_train_loader)
for k, v in x.items():
if isinstance(v, torch.Tensor):
x[k] = v.to(device)
try:
loss = model(x) # Forward pass
except:
continue
# check if loss is nan
if torch.isnan(loss):
continue
loss.backward() # Compute gradients
optimizer.step() # Update parameters
scheduler.step() # Update learning rate schedule
optimizer.zero_grad() # Reset gradients
description = f"step: {step} | epoch: {step // len(train_loader)} | loss: {loss.item():.2f}"
if (step + 1) % eval_every == 0:
current_path = os.path.join(log_dir, f'model_{step + 1}')
save_model(model, current_path)
#val_data_dir = "/gpfswork/rech/ohy/upa43yu/NER_datasets" # can be obtained from "https://drive.google.com/file/d/1T-5IbocGka35I7X3CE6yKe5N_Xg2lVKT/view"
#get_for_all_path(model, step, log_dir, val_data_dir) # you can remove this comment if you want to evaluate the model
model.train()
pbar.set_description(description)
def create_parser():
parser = argparse.ArgumentParser(description="Span-based NER")
parser.add_argument("--config", type=str, default="config.yaml", help="Path to config file")
parser.add_argument('--log_dir', type=str, default='logs', help='Path to the log directory')
return parser
def load_config_as_namespace(config_file):
with open(config_file, 'r') as f:
config_dict = yaml.safe_load(f)
return argparse.Namespace(**config_dict)
if __name__ == "__main__":
# parse args
parser = create_parser()
args = parser.parse_args()
# load config
config = load_config_as_namespace(args.config)
config.log_dir = args.log_dir
try:
with open(config.train_data, 'r') as f:
data = json.load(f)
except:
data = sample_train_data(config.train_data, 10000)
if config.prev_path != "none":
model = load_model(config.prev_path)
model.config = config
else:
model = GLiNER(config)
if torch.cuda.is_available():
model = model.cuda()
lr_encoder = float(config.lr_encoder)
lr_others = float(config.lr_others)
optimizer = torch.optim.AdamW([
# encoder
{'params': model.token_rep_layer.parameters(), 'lr': lr_encoder},
{'params': model.rnn.parameters(), 'lr': lr_others},
# projection layers
{'params': model.span_rep_layer.parameters(), 'lr': lr_others},
{'params': model.prompt_rep_layer.parameters(), 'lr': lr_others},
])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
train(model, optimizer, data, num_steps=config.num_steps, eval_every=config.eval_every,
log_dir=config.log_dir, warmup_ratio=config.warmup_ratio, train_batch_size=config.train_batch_size,
device=device)
|