Spaces:
Sleeping
Sleeping
from typing import List | |
import torch | |
from flair.data import Sentence | |
from flair.embeddings import TransformerWordEmbeddings | |
from torch import nn | |
from torch.nn.utils.rnn import pad_sequence | |
# flair.cache_root = '/gpfswork/rech/pds/upa43yu/.cache' | |
class TokenRepLayer(nn.Module): | |
def __init__(self, model_name: str = "bert-base-cased", fine_tune: bool = True, subtoken_pooling: str = "first", | |
hidden_size: int = 768, | |
add_tokens=["[SEP]", "[ENT]"] | |
): | |
super().__init__() | |
self.bert_layer = TransformerWordEmbeddings( | |
model_name, | |
fine_tune=fine_tune, | |
subtoken_pooling=subtoken_pooling, | |
allow_long_sentences=True | |
) | |
# add tokens to vocabulary | |
self.bert_layer.tokenizer.add_tokens(add_tokens) | |
# resize token embeddings | |
self.bert_layer.model.resize_token_embeddings(len(self.bert_layer.tokenizer)) | |
bert_hidden_size = self.bert_layer.embedding_length | |
if hidden_size != bert_hidden_size: | |
self.projection = nn.Linear(bert_hidden_size, hidden_size) | |
def forward(self, tokens: List[List[str]], lengths: torch.Tensor): | |
token_embeddings = self.compute_word_embedding(tokens) | |
if hasattr(self, "projection"): | |
token_embeddings = self.projection(token_embeddings) | |
B = len(lengths) | |
max_length = lengths.max() | |
mask = (torch.arange(max_length).view(1, -1).repeat(B, 1) < lengths.cpu().unsqueeze(1)).to( | |
token_embeddings.device).long() | |
return {"embeddings": token_embeddings, "mask": mask} | |
def compute_word_embedding(self, tokens): | |
sentences = [Sentence(i) for i in tokens] | |
self.bert_layer.embed(sentences) | |
token_embeddings = pad_sequence([torch.stack([t.embedding for t in k]) for k in sentences], batch_first=True) | |
return token_embeddings | |