File size: 8,715 Bytes
3b2b77a
 
 
da92c10
3b2b77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f343ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2b77a
 
 
 
f343ea1
3b2b77a
 
 
 
f343ea1
 
3b2b77a
f343ea1
3b2b77a
 
 
 
 
 
 
 
 
6fe0b16
f343ea1
3b2b77a
6fe0b16
f343ea1
 
 
 
 
 
3b2b77a
 
 
 
f343ea1
3b2b77a
 
 
 
 
 
 
 
 
6fe0b16
3b2b77a
 
 
 
 
 
 
 
 
 
 
f343ea1
3b2b77a
 
 
 
 
 
 
 
 
 
 
 
 
f343ea1
3b2b77a
 
f343ea1
3b2b77a
 
 
 
 
 
f343ea1
 
3b2b77a
 
 
 
 
f343ea1
 
 
 
 
3b2b77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f343ea1
3b2b77a
 
f343ea1
3b2b77a
f343ea1
3b2b77a
f343ea1
3b2b77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f343ea1
3b2b77a
 
 
 
 
f343ea1
3b2b77a
 
 
 
f343ea1
3b2b77a
 
6fe0b16
3b2b77a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import sys
sys.path.append("./")
import gradio as gr
import spaces
import torch
from ip_adapter.utils import BLOCKS as BLOCKS
import numpy as np
import random
from diffusers import (
    AutoencoderKL,
    StableDiffusionXLPipeline,
)
from ip_adapter import StyleStudio_Adapter

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
import os
os.system("git lfs install")
os.system("git clone https://huggingface.co/h94/IP-Adapter")
os.system("mv IP-Adapter/sdxl_models sdxl_models")

from huggingface_hub import hf_hub_download

# hf_hub_download(repo_id="h94/IP-Adapter", filename="sdxl_models/image_encoder", local_dir="./sdxl_models/image_encoder")
hf_hub_download(repo_id="InstantX/CSGO", filename="csgo_4_32.bin", local_dir="./CSGO/")
os.system('rm -rf IP-Adapter/models')
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
csgo_ckpt ='./CSGO/csgo_4_32.bin'
pretrained_vae_name_or_path ='madebyollin/sdxl-vae-fp16-fix'
weight_dtype = torch.float16

vae = AutoencoderKL.from_pretrained(pretrained_vae_name_or_path,torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    add_watermarker=False,
    vae=vae
)
pipe.enable_vae_tiling()

target_style_blocks = BLOCKS['style']

csgo = StyleStudio_Adapter(
        pipe, image_encoder_path, csgo_ckpt, device, num_style_tokens=32,
        target_style_blocks=target_style_blocks,
        controlnet_adapter=False,
        style_model_resampler=True,

        fuSAttn=True,
        end_fusion=20,
        adainIP=True,
        )

MAX_SEED = np.iinfo(np.int32).max


def get_example():
    case = [
        [
            './assets/style1.jpg',
            "A red apple",
            7.0,
            42,
            10,
         ],
        [
            './assets/style2.jpg',
            "A black car",
            7.0,
            42,
            10,
         ],
        [
            './assets/style3.jpg',
            "A orange bus",
            7.0,
            42,
            10,
         ],
    ]
    return case

def run_for_examples(style_image_pil, prompt, guidance_scale, seed, end_fusion):
    
    return create_image(
        style_image_pil=style_image_pil,
        prompt=prompt,
        neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
        guidance_scale=guidance_scale,
        num_inference_steps=50,
        seed=seed,
        end_fusion=end_fusion,
        use_SAttn=True,
        crossModalAdaIN=True,
    )

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def create_image(style_image_pil,
                 prompt,
                 neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
                 guidance_scale=7,
                 num_inference_steps=50,
                 end_fusion=20,
                 crossModalAdaIN=True,
                 use_SAttn=True,
                 seed=42,
):

    style_image = style_image_pil

    print(seed)
    generator = torch.Generator(device).manual_seed(seed)
    init_latents = torch.randn((1, 4, 128, 128), generator=generator, device="cuda", dtype=torch.float16)
    num_sample=1
    if use_SAttn:
        num_sample=2
        init_latents = init_latents.repeat(num_sample, 1, 1, 1)
    with torch.no_grad():
        images = csgo.generate(pil_style_image=style_image,
                                prompt=prompt,
                                negative_prompt=neg_prompt,
                                height=1024,
                                width=1024,
                                guidance_scale=guidance_scale,
                                num_images_per_prompt=1,
                                num_samples=num_sample,
                                num_inference_steps=num_inference_steps,
                                end_fusion=end_fusion,
                                cross_modal_adain=crossModalAdaIN,
                                use_SAttn=use_SAttn,
                                
                                generator=generator,
                                latents=init_latents,
                                )

    if use_SAttn:
        return [images[1]]
    else:
        return [images[0]]

# Description
title = r"""
<h1 align="center">StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</h1>
"""

description = r"""
<b>Official πŸ€— Gradio demo</b> for <a href='https://github.com/Westlake-AGI-Lab/StyleStudio' target='_blank'><b>StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</b></a>.<br>
How to use:<br>
1. Upload a style image.
2. <b>Enter your desired prompt</b>.
3. Click the <b>Submit</b> button to begin customization.
4. Share your stylized photo with your friends and enjoy! 😊

Advanced usage:<br>
1. Click advanced options.
2. Choose different guidance and steps.
3. Set the timing for the Teacher Model's participation.
4. Feel free to discontinue using the Cross-Modal AdaIN and the Teacher Model for result comparison.
"""

article = r"""
---
πŸ“ **Tips**
<br>
1. As the value of end_fusion <b>increases</b>, the style gradually diminishes. 
Therefore, it is suggested to set end_fusion to be between <b>1/5 and 1/3</b> of the number of inference steps (num inference steps).
2. If you want to experience style-based CFG, see the details on the <a href="https://github.com/Westlake-AGI-Lab/StyleStudio">GitHub repo</a>.

---
πŸ“ **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex

```
πŸ“§ **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>leimingkun@westlake.edu.cn</b>.
"""

block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False)
with block:
    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Tabs():
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        style_image_pil = gr.Image(label="Style Image", type='pil')

                prompt = gr.Textbox(label="Prompt",
                                    value="A red apple")
                
                neg_prompt = gr.Textbox(label="Negative Prompt",
                                    value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry")

                with gr.Accordion(open=True, label="Advanced Options"):

                    guidance_scale = gr.Slider(minimum=1, maximum=15.0, step=0.01, value=7.0, label="guidance scale")
                    
                    num_inference_steps = gr.Slider(minimum=5, maximum=200.0, step=1.0, value=50,
                                                    label="num inference steps")
                    
                    end_fusion = gr.Slider(minimum=0, maximum=200, step=1.0, value=20.0, label="end fusion")
                    
                    seed = gr.Slider(minimum=-1000000, maximum=1000000, value=42, step=1, label="Seed Value")
                    
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
                    
                    crossModalAdaIN = gr.Checkbox(label="Cross Modal AdaIN", value=True)
                    use_SAttn = gr.Checkbox(label="Teacher Model", value=True)

                generate_button = gr.Button("Generate Image")

            with gr.Column():
                generated_image = gr.Gallery(label="Generated Image")

        generate_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=create_image,
            inputs=[
                    style_image_pil,
                    prompt,
                    neg_prompt,
                    guidance_scale,
                    num_inference_steps,
                    end_fusion,
                    crossModalAdaIN,
                    use_SAttn,
                    seed,],
            outputs=[generated_image])

    gr.Examples(
        examples=get_example(),
        inputs=[style_image_pil, prompt, guidance_scale, seed, end_fusion],
        fn=run_for_examples,
        outputs=[generated_image],
        cache_examples=False,
    )

    gr.Markdown(article)

block.launch()