File size: 11,661 Bytes
4cbbb59
 
 
 
 
0334511
 
 
 
 
 
 
 
 
 
 
 
 
8a3d969
0334511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26e1dd
 
 
 
 
 
fb27abb
52da111
ba79e24
 
 
f26e1dd
ce81a5e
 
 
14ebd0d
 
d8235e4
14ebd0d
d8235e4
14ebd0d
d8235e4
 
 
b266889
f26e1dd
 
 
 
 
 
 
 
0334511
f26e1dd
 
 
 
 
 
 
 
fb27abb
f26e1dd
0334511
f26e1dd
 
 
 
0334511
fb27abb
f26e1dd
 
 
 
 
 
 
 
0334511
f26e1dd
 
 
 
 
 
 
 
 
 
 
c8dbf12
fb27abb
f26e1dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee1245
f26e1dd
fb27abb
f26e1dd
0334511
 
 
8e3b8d4
0334511
8e3b8d4
 
0334511
 
 
8e3b8d4
0334511
4cbbb59
0334511
 
 
 
4cbbb59
 
0334511
 
96cb425
0334511
 
96cb425
0334511
 
 
 
96cb425
 
 
 
 
4cbbb59
 
0334511
 
8e3b8d4
 
 
 
 
 
 
 
 
 
 
 
 
3f8f5b4
1d65f43
0334511
 
8a3d969
0334511
52da111
 
 
 
fb27abb
0334511
8df8af0
0334511
 
 
 
 
 
 
 
 
 
52da111
8a3d969
bd507f5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
"""
This file is used for deploying hugging face demo:
https://huggingface.co/spaces/sczhou/CodeFormer
"""

import sys
sys.path.append('CodeFormer')
import os
import cv2
import torch
import torch.nn.functional as F
import gradio as gr

from torchvision.transforms.functional import normalize

from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.utils.misc import is_gray
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer

from basicsr.utils.registry import ARCH_REGISTRY


os.system("pip freeze")

pretrain_model_url = {
    'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
    'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
    'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
    'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
}
# download weights
if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'):
    load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None)
if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'):
    load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'):
    load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'):
    load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None)

# download images
torch.hub.download_url_to_file(
    'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png',
    '01.png')
torch.hub.download_url_to_file(
    'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg',
    '02.jpg')
torch.hub.download_url_to_file(
    'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg',
    '03.jpg')
torch.hub.download_url_to_file(
    'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg',
    '04.jpg')
torch.hub.download_url_to_file(
    'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg',
    '05.jpg')

def imread(img_path):
    img = cv2.imread(img_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return img

# set enhancer with RealESRGAN
def set_realesrgan():
    half = True if torch.cuda.is_available() else False
    model = RRDBNet(
        num_in_ch=3,
        num_out_ch=3,
        num_feat=64,
        num_block=23,
        num_grow_ch=32,
        scale=2,
    )
    upsampler = RealESRGANer(
        scale=2,
        model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
        model=model,
        tile=400,
        tile_pad=40,
        pre_pad=0,
        half=half,
    )
    return upsampler

upsampler = set_realesrgan()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
    dim_embd=512,
    codebook_size=1024,
    n_head=8,
    n_layers=9,
    connect_list=["32", "64", "128", "256"],
).to(device)
ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
checkpoint = torch.load(ckpt_path)["params_ema"]
codeformer_net.load_state_dict(checkpoint)
codeformer_net.eval()

os.makedirs('output', exist_ok=True)

def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
    """Run a single prediction on the model"""
    try: # global try
        # take the default setting for the demo
        has_aligned = False
        only_center_face = False
        draw_box = False
        detection_model = "retinaface_resnet50"
        print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity)
        
        if background_enhance is None: background_enhance = True
        if face_upsample is None: face_upsample = True
        if upscale is None: upscale = 2

        img = cv2.imread(str(image), cv2.IMREAD_COLOR)
        print('\timage size:', img.shape)

        upscale = int(upscale) # convert type to int
        if upscale > 4: # avoid memory exceeded due to too large upscale
            upscale = 4 
        if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
            upscale = 2 
        if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
            upscale = 1
            background_enhance = False
            face_upsample = False

        face_helper = FaceRestoreHelper(
            upscale,
            face_size=512,
            crop_ratio=(1, 1),
            det_model=detection_model,
            save_ext="png",
            use_parse=True,
            device=device,
        )
        bg_upsampler = upsampler if background_enhance else None
        face_upsampler = upsampler if face_upsample else None

        if has_aligned:
            # the input faces are already cropped and aligned
            img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
            face_helper.is_gray = is_gray(img, threshold=5)
            if face_helper.is_gray:
                print('\tgrayscale input: True')
            face_helper.cropped_faces = [img]
        else:
            face_helper.read_image(img)
            # get face landmarks for each face
            num_det_faces = face_helper.get_face_landmarks_5(
            only_center_face=only_center_face, resize=640, eye_dist_threshold=5
            )
            print(f'\tdetect {num_det_faces} faces')
            # align and warp each face
            face_helper.align_warp_face()

        # face restoration for each cropped face
        for idx, cropped_face in enumerate(face_helper.cropped_faces):
            # prepare data
            cropped_face_t = img2tensor(
                cropped_face / 255.0, bgr2rgb=True, float32=True
            )
            normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
            cropped_face_t = cropped_face_t.unsqueeze(0).to(device)

            try:
                with torch.no_grad():
                    output = codeformer_net(
                        cropped_face_t, w=codeformer_fidelity, adain=True
                    )[0]
                    restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
                del output
                torch.cuda.empty_cache()
            except RuntimeError as error:
                print(f"Failed inference for CodeFormer: {error}")
                restored_face = tensor2img(
                    cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
                )

            restored_face = restored_face.astype("uint8")
            face_helper.add_restored_face(restored_face)

        # paste_back
        if not has_aligned:
            # upsample the background
            if bg_upsampler is not None:
                # Now only support RealESRGAN for upsampling background
                bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
            else:
                bg_img = None
            face_helper.get_inverse_affine(None)
            # paste each restored face to the input image
            if face_upsample and face_upsampler is not None:
                restored_img = face_helper.paste_faces_to_input_image(
                    upsample_img=bg_img,
                    draw_box=draw_box,
                    face_upsampler=face_upsampler,
                )
            else:
                restored_img = face_helper.paste_faces_to_input_image(
                    upsample_img=bg_img, draw_box=draw_box
                )

        # save restored img
        save_path = f'output/out.png'
        imwrite(restored_img, str(save_path))

        restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
        return restored_img
    except Exception as error:
        print('Global exception', error)
        return None, None


title = "CodeFormer: Robust Face Restoration and Enhancement Network"

description = r"""<center><img src='https://user-images.githubusercontent.com/14334509/189166076-94bb2cac-4f4e-40fb-a69f-66709e3d98f5.png' alt='CodeFormer logo'></center>
<br>
<b>Official Gradio demo</b> for <a href='https://github.com/sczhou/CodeFormer' target='_blank'><b>Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)</b></a><br>
🔥 CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.<br>
🤗 Try CodeFormer for improved stable-diffusion generation!<br>
"""

article = r"""
If CodeFormer is helpful, please help to ⭐ the <a href='https://github.com/sczhou/CodeFormer' target='_blank'>Github Repo</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/sczhou/CodeFormer?style=social)](https://github.com/sczhou/CodeFormer)

---

📝 **Citation**

If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{zhou2022codeformer,
    author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
    title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
    booktitle = {NeurIPS},
    year = {2022}
}
```

📋 **License**

This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>. 
Redistribution and use for non-commercial purposes should follow this license.

📧 **Contact**

If you have any questions, please feel free to reach me out at <b>shangchenzhou@gmail.com</b>.

🤗 **Find Me:**
<style type="text/css">
td {
    padding-right: 0px !important;
}
</style>

<table>
<tr>
    <td><a href="https://github.com/sczhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a></td>
    <td><a href="https://twitter.com/ShangchenZhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a></td>
</tr>
</table>

<center><img src='https://api.infinitescript.com/badgen/count?name=sczhou/CodeFormer&ltext=Visitors&color=6dc9aa' alt='visitors'></center>
"""

demo = gr.Interface(
    inference, [
        gr.Image(type="filepath", label="Input"),
        gr.Checkbox(value=True, label="Background_Enhance"),
        gr.Checkbox(value=True, label="Face_Upsample"),
        gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
        gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
    ], [
        gr.Image(type="numpy", label="Output").style(height='auto')
    ],
    title=title,
    description=description,
    article=article,       
    examples=[
        ['01.png', True, True, 2, 0.7],
        ['02.jpg', True, True, 2, 0.7],
        ['03.jpg', True, True, 2, 0.7],
        ['04.jpg', True, True, 2, 0.1],
        ['05.jpg', True, True, 2, 0.1]
      ])

DEBUG = os.getenv('DEBUG') == '1'
demo.queue(api_open=False, concurrency_count=2, max_size=10)
demo.launch(debug=DEBUG)