ECON / lib /common /BNI_utils.py
Yuliang's picture
remove MeshLab dependency with Open3D
fb140f6
raw
history blame
25.4 kB
import torch
import trimesh
import cv2, os
from PIL import Image
import os.path as osp
import cupy as cp
import numpy as np
from cupyx.scipy.sparse import csr_matrix, vstack, hstack, spdiags, diags, coo_matrix
from cupyx.scipy.sparse.linalg import cg
from tqdm.auto import tqdm
from lib.dataset.mesh_util import clean_floats
def find_max_list(lst):
list_len = [len(i) for i in lst]
max_id = np.argmax(np.array(list_len))
return lst[max_id]
def interpolate_pts(pts, diff_ids):
pts_extend = np.around((pts[diff_ids] + pts[diff_ids - 1]) * 0.5).astype(np.int32)
pts = np.insert(pts, diff_ids, pts_extend, axis=0)
return pts
def align_pts(pts1, pts2):
diff_num = abs(len(pts1) - len(pts2))
diff_ids = np.sort(np.random.choice(min(len(pts2), len(pts1)), diff_num, replace=True))
if len(pts1) > len(pts2):
pts2 = interpolate_pts(pts2, diff_ids)
elif len(pts2) > len(pts1):
pts1 = interpolate_pts(pts1, diff_ids)
else:
pass
return pts1, pts2
def repeat_pts(pts1, pts2):
coverage_mask = ((pts1[:, None, :] == pts2[None, :, :]).sum(axis=2) == 2.).any(axis=1)
return coverage_mask
def find_contour(mask, method='all'):
if method == 'all':
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
else:
contours, _ = cv2.findContours(
mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
contour_cloth = np.array(find_max_list(contours))[:, 0, :]
return contour_cloth
def mean_value_cordinates(inner_pts, contour_pts):
body_edges_a = np.sqrt(((inner_pts[:, None] - contour_pts[None, :])**2).sum(axis=2))
body_edges_c = np.roll(body_edges_a, shift=-1, axis=1)
body_edges_b = np.sqrt(((contour_pts - np.roll(contour_pts, shift=-1, axis=0))**2).sum(axis=1))
body_edges = np.concatenate(
[
body_edges_a[..., None], body_edges_c[..., None],
np.repeat(body_edges_b[None, :, None], axis=0, repeats=len(inner_pts))
],
axis=-1
)
body_cos = (body_edges[:, :, 0]**2 + body_edges[:, :, 1]**2 -
body_edges[:, :, 2]**2) / (2 * body_edges[:, :, 0] * body_edges[:, :, 1])
body_tan_half = np.sqrt(
(1. - np.clip(body_cos, a_max=1., a_min=-1.)) / np.clip(1. + body_cos, 1e-6, 2.)
)
w = (body_tan_half + np.roll(body_tan_half, shift=1, axis=1)) / body_edges_a
w /= w.sum(axis=1, keepdims=True)
return w
def get_dst_mat(contour_body, contour_cloth):
dst_mat = ((contour_body[:, None, :] - contour_cloth[None, :, :])**2).sum(axis=2)
return dst_mat
def dispCorres(img_size, contour1, contour2, phi, dir_path):
contour1 = contour1[None, :, None, :].astype(np.int32)
contour2 = contour2[None, :, None, :].astype(np.int32)
disp = np.zeros((img_size, img_size, 3), dtype=np.uint8)
cv2.drawContours(disp, contour1, -1, (0, 255, 0), 1) # green
cv2.drawContours(disp, contour2, -1, (255, 0, 0), 1) # blue
for i in range(contour1.shape[1]): # do not show all the points when display
# cv2.circle(disp, (contour1[0, i, 0, 0], contour1[0, i, 0, 1]), 1,
# (255, 0, 0), -1)
corresPoint = contour2[0, phi[i], 0]
# cv2.circle(disp, (corresPoint[0], corresPoint[1]), 1, (0, 255, 0), -1)
cv2.line(
disp, (contour1[0, i, 0, 0], contour1[0, i, 0, 1]), (corresPoint[0], corresPoint[1]),
(255, 255, 255), 1
)
cv2.imwrite(osp.join(dir_path, "corres.png"), disp)
def remove_stretched_faces(verts, faces):
mesh = trimesh.Trimesh(verts, faces)
camera_ray = np.array([0.0, 0.0, 1.0])
faces_cam_angles = np.dot(mesh.face_normals, camera_ray)
# cos(90-20)=0.34 cos(90-10)=0.17, 10~20 degree
faces_mask = np.abs(faces_cam_angles) > 2e-1
mesh.update_faces(faces_mask)
mesh.remove_unreferenced_vertices()
return mesh.vertices, mesh.faces
def tensor2arr(t, mask=False):
if not mask:
return t.squeeze(0).permute(1, 2, 0).detach().cpu().numpy()
else:
mask = t.squeeze(0).abs().sum(dim=0, keepdim=True)
return (mask != mask[:, 0, 0]).float().squeeze(0).detach().cpu().numpy()
def arr2png(t):
return ((t + 1.0) * 0.5 * 255.0).astype(np.uint8)
def depth2arr(t):
return t.float().detach().cpu().numpy()
def depth2png(t):
t_copy = t.copy()
t_bg = t_copy[0, 0]
valid_region = np.logical_and(t > -1.0, t != t_bg)
t_copy[valid_region] -= t_copy[valid_region].min()
t_copy[valid_region] /= t_copy[valid_region].max()
t_copy[valid_region] = (1. - t_copy[valid_region]) * 255.0
t_copy[~valid_region] = 0.0
return t_copy[..., None].astype(np.uint8)
def verts_transform(t, depth_scale):
t_copy = t.clone()
t_copy *= depth_scale * 0.5
t_copy += depth_scale * 0.5
t_copy = t_copy[:, [1, 0, 2]] * torch.Tensor([2.0, 2.0, -2.0]) + torch.Tensor(
[0.0, 0.0, depth_scale]
)
return t_copy
def verts_inverse_transform(t, depth_scale):
t_copy = t.clone()
t_copy -= torch.tensor([0.0, 0.0, depth_scale])
t_copy /= torch.tensor([2.0, 2.0, -2.0])
t_copy -= depth_scale * 0.5
t_copy /= depth_scale * 0.5
t_copy = t_copy[:, [1, 0, 2]]
return t_copy
def depth_inverse_transform(t, depth_scale):
t_copy = t.clone()
t_copy -= torch.tensor(depth_scale)
t_copy /= torch.tensor(-2.0)
t_copy -= depth_scale * 0.5
t_copy /= depth_scale * 0.5
return t_copy
# BNI related
def move_left(mask):
return cp.pad(mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
def move_right(mask):
return cp.pad(mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
def move_top(mask):
return cp.pad(mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
def move_bottom(mask):
return cp.pad(mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
def move_top_left(mask):
return cp.pad(mask, ((0, 1), (0, 1)), "constant", constant_values=0)[1:, 1:]
def move_top_right(mask):
return cp.pad(mask, ((0, 1), (1, 0)), "constant", constant_values=0)[1:, :-1]
def move_bottom_left(mask):
return cp.pad(mask, ((1, 0), (0, 1)), "constant", constant_values=0)[:-1, 1:]
def move_bottom_right(mask):
return cp.pad(mask, ((1, 0), (1, 0)), "constant", constant_values=0)[:-1, :-1]
def generate_dx_dy_new(mask, nz_horizontal, nz_vertical, step_size=1):
# pixel coordinates
# ^ vertical positive
# |
# |
# |
# o ---> horizontal positive
num_pixel = cp.sum(mask)
pixel_idx = cp.zeros_like(mask, dtype=int)
pixel_idx[mask] = cp.arange(num_pixel)
has_left_mask = cp.logical_and(move_right(mask), mask)
has_right_mask = cp.logical_and(move_left(mask), mask)
has_bottom_mask = cp.logical_and(move_top(mask), mask)
has_top_mask = cp.logical_and(move_bottom(mask), mask)
nz_left = nz_horizontal[has_left_mask[mask]]
nz_right = nz_horizontal[has_right_mask[mask]]
nz_top = nz_vertical[has_top_mask[mask]]
nz_bottom = nz_vertical[has_bottom_mask[mask]]
data = cp.stack([-nz_left / step_size, nz_left / step_size], -1).flatten()
indices = cp.stack((pixel_idx[move_left(has_left_mask)], pixel_idx[has_left_mask]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_left_mask[mask].astype(int) * 2)])
D_horizontal_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_right / step_size, nz_right / step_size], -1).flatten()
indices = cp.stack((pixel_idx[has_right_mask], pixel_idx[move_right(has_right_mask)]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_right_mask[mask].astype(int) * 2)])
D_horizontal_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_top / step_size, nz_top / step_size], -1).flatten()
indices = cp.stack((pixel_idx[has_top_mask], pixel_idx[move_top(has_top_mask)]), -1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_top_mask[mask].astype(int) * 2)])
D_vertical_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_bottom / step_size, nz_bottom / step_size], -1).flatten()
indices = cp.stack((pixel_idx[move_bottom(has_bottom_mask)], pixel_idx[has_bottom_mask]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_bottom_mask[mask].astype(int) * 2)])
D_vertical_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
return D_horizontal_pos, D_horizontal_neg, D_vertical_pos, D_vertical_neg
def generate_dx_dy(mask, nz_horizontal, nz_vertical, step_size=1):
# pixel coordinates
# ^ vertical positive
# |
# |
# |
# o ---> horizontal positive
num_pixel = cp.sum(mask)
pixel_idx = cp.zeros_like(mask, dtype=int)
pixel_idx[mask] = cp.arange(num_pixel)
has_left_mask = cp.logical_and(move_right(mask), mask)
has_right_mask = cp.logical_and(move_left(mask), mask)
has_bottom_mask = cp.logical_and(move_top(mask), mask)
has_top_mask = cp.logical_and(move_bottom(mask), mask)
nz_left = nz_horizontal[has_left_mask[mask]]
nz_right = nz_horizontal[has_right_mask[mask]]
nz_top = nz_vertical[has_top_mask[mask]]
nz_bottom = nz_vertical[has_bottom_mask[mask]]
data = cp.stack([-nz_left / step_size, nz_left / step_size], -1).flatten()
indices = cp.stack((pixel_idx[move_left(has_left_mask)], pixel_idx[has_left_mask]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_left_mask[mask].astype(int) * 2)])
D_horizontal_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_right / step_size, nz_right / step_size], -1).flatten()
indices = cp.stack((pixel_idx[has_right_mask], pixel_idx[move_right(has_right_mask)]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_right_mask[mask].astype(int) * 2)])
D_horizontal_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_top / step_size, nz_top / step_size], -1).flatten()
indices = cp.stack((pixel_idx[has_top_mask], pixel_idx[move_top(has_top_mask)]), -1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_top_mask[mask].astype(int) * 2)])
D_vertical_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_bottom / step_size, nz_bottom / step_size], -1).flatten()
indices = cp.stack((pixel_idx[move_bottom(has_bottom_mask)], pixel_idx[has_bottom_mask]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_bottom_mask[mask].astype(int) * 2)])
D_vertical_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
return D_horizontal_pos, D_horizontal_neg, D_vertical_pos, D_vertical_neg
def construct_facets_from(mask):
idx = cp.zeros_like(mask, dtype=int)
idx[mask] = cp.arange(cp.sum(mask))
facet_move_top_mask = move_top(mask)
facet_move_left_mask = move_left(mask)
facet_move_top_left_mask = move_top_left(mask)
facet_top_left_mask = (
facet_move_top_mask * facet_move_left_mask * facet_move_top_left_mask * mask
)
facet_top_right_mask = move_right(facet_top_left_mask)
facet_bottom_left_mask = move_bottom(facet_top_left_mask)
facet_bottom_right_mask = move_bottom_right(facet_top_left_mask)
return cp.hstack(
(
4 * cp.ones((cp.sum(facet_top_left_mask).item(), 1)),
idx[facet_top_left_mask][:, None],
idx[facet_bottom_left_mask][:, None],
idx[facet_bottom_right_mask][:, None],
idx[facet_top_right_mask][:, None],
)
).astype(int)
def map_depth_map_to_point_clouds(depth_map, mask, K=None, step_size=1):
# y
# | z
# | /
# |/
# o ---x
H, W = mask.shape
yy, xx = cp.meshgrid(cp.arange(W), cp.arange(H))
xx = cp.flip(xx, axis=0)
if K is None:
vertices = cp.zeros((H, W, 3))
vertices[..., 0] = xx * step_size
vertices[..., 1] = yy * step_size
vertices[..., 2] = depth_map
vertices = vertices[mask]
else:
u = cp.zeros((H, W, 3))
u[..., 0] = xx
u[..., 1] = yy
u[..., 2] = 1
u = u[mask].T # 3 x m
vertices = (cp.linalg.inv(K) @ u).T * depth_map[mask, cp.newaxis] # m x 3
return vertices
def sigmoid(x, k=1):
return 1 / (1 + cp.exp(-k * x))
def boundary_excluded_mask(mask):
top_mask = cp.pad(mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
bottom_mask = cp.pad(mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
left_mask = cp.pad(mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
right_mask = cp.pad(mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
be_mask = top_mask * bottom_mask * left_mask * right_mask * mask
# discard single point
top_mask = cp.pad(be_mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
bottom_mask = cp.pad(be_mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
left_mask = cp.pad(be_mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
right_mask = cp.pad(be_mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
bes_mask = (top_mask + bottom_mask + left_mask + right_mask).astype(bool)
be_mask = cp.logical_and(be_mask, bes_mask)
return be_mask
def create_boundary_matrix(mask):
num_pixel = cp.sum(mask)
pixel_idx = cp.zeros_like(mask, dtype=int)
pixel_idx[mask] = cp.arange(num_pixel)
be_mask = boundary_excluded_mask(mask)
boundary_mask = cp.logical_xor(be_mask, mask)
diag_data_term = boundary_mask[mask].astype(int)
B = diags(diag_data_term)
num_boundary_pixel = cp.sum(boundary_mask).item()
data_term = cp.concatenate((cp.ones(num_boundary_pixel), -cp.ones(num_boundary_pixel)))
row_idx = cp.tile(cp.arange(num_boundary_pixel), 2)
col_idx = cp.concatenate((pixel_idx[boundary_mask], pixel_idx[boundary_mask] + num_pixel))
B_full = coo_matrix((data_term, (row_idx, col_idx)), shape=(num_boundary_pixel, 2 * num_pixel))
return B, B_full
def double_side_bilateral_normal_integration(
normal_front,
normal_back,
normal_mask,
depth_front=None,
depth_back=None,
depth_mask=None,
k=2,
lambda_normal_back=1,
lambda_depth_front=1e-4,
lambda_depth_back=1e-2,
lambda_boundary_consistency=1,
step_size=1,
max_iter=150,
tol=1e-4,
cg_max_iter=5000,
cg_tol=1e-3
):
# To avoid confusion, we list the coordinate systems in this code as follows
#
# pixel coordinates camera coordinates normal coordinates (the main paper's Fig. 1 (a))
# u x y
# | | z |
# | | / o -- x
# | |/ /
# o --- v o --- y z
# (bottom left)
# (o is the optical center;
# xy-plane is parallel to the image plane;
# +z is the viewing direction.)
#
# The input normal map should be defined in the normal coordinates.
# The camera matrix K should be defined in the camera coordinates.
# K = [[fx, 0, cx],
# [0, fy, cy],
# [0, 0, 1]]
num_normals = cp.sum(normal_mask)
normal_map_front = cp.asarray(normal_front)
normal_map_back = cp.asarray(normal_back)
normal_mask = cp.asarray(normal_mask)
if depth_mask is not None:
depth_map_front = cp.asarray(depth_front)
depth_map_back = cp.asarray(depth_back)
depth_mask = cp.asarray(depth_mask)
# transfer the normal map from the normal coordinates to the camera coordinates
nx_front = normal_map_front[normal_mask, 1]
ny_front = normal_map_front[normal_mask, 0]
nz_front = -normal_map_front[normal_mask, 2]
del normal_map_front
nx_back = normal_map_back[normal_mask, 1]
ny_back = normal_map_back[normal_mask, 0]
nz_back = -normal_map_back[normal_mask, 2]
del normal_map_back
# right, left, top, bottom
A3_f, A4_f, A1_f, A2_f = generate_dx_dy(
normal_mask, nz_horizontal=nz_front, nz_vertical=nz_front, step_size=step_size
)
A3_b, A4_b, A1_b, A2_b = generate_dx_dy(
normal_mask, nz_horizontal=nz_back, nz_vertical=nz_back, step_size=step_size
)
has_left_mask = cp.logical_and(move_right(normal_mask), normal_mask)
has_right_mask = cp.logical_and(move_left(normal_mask), normal_mask)
has_bottom_mask = cp.logical_and(move_top(normal_mask), normal_mask)
has_top_mask = cp.logical_and(move_bottom(normal_mask), normal_mask)
top_boundnary_mask = cp.logical_xor(has_top_mask, normal_mask)[normal_mask]
bottom_boundary_mask = cp.logical_xor(has_bottom_mask, normal_mask)[normal_mask]
left_boundary_mask = cp.logical_xor(has_left_mask, normal_mask)[normal_mask]
right_boudnary_mask = cp.logical_xor(has_right_mask, normal_mask)[normal_mask]
A_front_data = vstack((A1_f, A2_f, A3_f, A4_f))
A_front_zero = csr_matrix(A_front_data.shape)
A_front = hstack([A_front_data, A_front_zero])
A_back_data = vstack((A1_b, A2_b, A3_b, A4_b))
A_back_zero = csr_matrix(A_back_data.shape)
A_back = hstack([A_back_zero, A_back_data])
b_front = cp.concatenate((-nx_front, -nx_front, -ny_front, -ny_front))
b_back = cp.concatenate((-nx_back, -nx_back, -ny_back, -ny_back))
# initialization
W_front = spdiags(
0.5 * cp.ones(4 * num_normals), 0, 4 * num_normals, 4 * num_normals, format="csr"
)
W_back = spdiags(
0.5 * cp.ones(4 * num_normals), 0, 4 * num_normals, 4 * num_normals, format="csr"
)
z_front = cp.zeros(num_normals, float)
z_back = cp.zeros(num_normals, float)
z_combined = cp.concatenate((z_front, z_back))
B, B_full = create_boundary_matrix(normal_mask)
B_mat = lambda_boundary_consistency * coo_matrix(B_full.get().T @ B_full.get()) #bug
energy_list = []
if depth_mask is not None:
depth_mask_flat = depth_mask[normal_mask].astype(bool) # shape: (num_normals,)
z_prior_front = depth_map_front[normal_mask] # shape: (num_normals,)
z_prior_front[~depth_mask_flat] = 0
z_prior_back = depth_map_back[normal_mask]
z_prior_back[~depth_mask_flat] = 0
m = depth_mask[normal_mask].astype(int)
M = diags(m)
energy = (A_front @ z_combined - b_front).T @ W_front @ (A_front @ z_combined - b_front) + \
lambda_normal_back * (A_back @ z_combined - b_back).T @ W_back @ (A_back @ z_combined - b_back) + \
lambda_depth_front * (z_front - z_prior_front).T @ M @ (z_front - z_prior_front) + \
lambda_depth_back * (z_back - z_prior_back).T @ M @ (z_back - z_prior_back) + \
lambda_boundary_consistency * (z_back - z_front).T @ B @ (z_back - z_front)
for i in range(max_iter):
A_mat_front = A_front_data.T @ W_front @ A_front_data
b_vec_front = A_front_data.T @ W_front @ b_front
A_mat_back = A_back_data.T @ W_back @ A_back_data
b_vec_back = A_back_data.T @ W_back @ b_back
if depth_mask is not None:
b_vec_front += lambda_depth_front * M @ z_prior_front
b_vec_back += lambda_depth_back * M @ z_prior_back
A_mat_front += lambda_depth_front * M
A_mat_back += lambda_depth_back * M
offset_front = cp.mean((z_prior_front - z_combined[:num_normals])[depth_mask_flat])
offset_back = cp.mean((z_prior_back - z_combined[num_normals:])[depth_mask_flat])
z_combined[:num_normals] = z_combined[:num_normals] + offset_front
z_combined[num_normals:] = z_combined[num_normals:] + offset_back
A_mat_combined = hstack([vstack((A_mat_front, csr_matrix((num_normals, num_normals)))), \
vstack((csr_matrix((num_normals, num_normals)), A_mat_back))]) + B_mat
b_vec_combined = cp.concatenate((b_vec_front, b_vec_back))
D = spdiags(
1 / cp.clip(A_mat_combined.diagonal(), 1e-5, None), 0, 2 * num_normals, 2 * num_normals,
"csr"
) # Jacob preconditioner
z_combined, _ = cg(
A_mat_combined, b_vec_combined, M=D, x0=z_combined, maxiter=cg_max_iter, tol=cg_tol
)
z_front = z_combined[:num_normals]
z_back = z_combined[num_normals:]
wu_f = sigmoid((A2_f.dot(z_front))**2 - (A1_f.dot(z_front))**2, k) # top
wv_f = sigmoid((A4_f.dot(z_front))**2 - (A3_f.dot(z_front))**2, k) # right
wu_f[top_boundnary_mask] = 0.5
wu_f[bottom_boundary_mask] = 0.5
wv_f[left_boundary_mask] = 0.5
wv_f[right_boudnary_mask] = 0.5
W_front = spdiags(
cp.concatenate((wu_f, 1 - wu_f, wv_f, 1 - wv_f)),
0,
4 * num_normals,
4 * num_normals,
format="csr"
)
wu_b = sigmoid((A2_b.dot(z_back))**2 - (A1_b.dot(z_back))**2, k) # top
wv_b = sigmoid((A4_b.dot(z_back))**2 - (A3_b.dot(z_back))**2, k) # right
wu_b[top_boundnary_mask] = 0.5
wu_b[bottom_boundary_mask] = 0.5
wv_b[left_boundary_mask] = 0.5
wv_b[right_boudnary_mask] = 0.5
W_back = spdiags(
cp.concatenate((wu_b, 1 - wu_b, wv_b, 1 - wv_b)),
0,
4 * num_normals,
4 * num_normals,
format="csr"
)
energy_old = energy
energy = (A_front_data @ z_front - b_front).T @ W_front @ (A_front_data @ z_front - b_front) + \
lambda_normal_back * (A_back_data @ z_back - b_back).T @ W_back @ (A_back_data @ z_back - b_back) + \
lambda_depth_front * (z_front - z_prior_front).T @ M @ (z_front - z_prior_front) + \
lambda_depth_back * (z_back - z_prior_back).T @ M @ (z_back - z_prior_back) +\
lambda_boundary_consistency * (z_back - z_front).T @ B @ (z_back - z_front)
energy_list.append(energy)
relative_energy = cp.abs(energy - energy_old) / energy_old
# print(f"step {i + 1}/{max_iter} energy: {energy:.3e}"
# f" relative energy: {relative_energy:.3e}")
if relative_energy < tol:
break
# del A1, A2, A3, A4, nx, ny
depth_map_front_est = cp.ones_like(normal_mask, float) * cp.nan
depth_map_front_est[normal_mask] = z_front
depth_map_back_est = cp.ones_like(normal_mask, float) * cp.nan
depth_map_back_est[normal_mask] = z_back
# manually cut the intersection
normal_mask[depth_map_front_est >= depth_map_back_est] = False
depth_map_front_est[~normal_mask] = cp.nan
depth_map_back_est[~normal_mask] = cp.nan
vertices_front = cp.asnumpy(
map_depth_map_to_point_clouds(
depth_map_front_est, normal_mask, K=None, step_size=step_size
)
)
vertices_back = cp.asnumpy(
map_depth_map_to_point_clouds(depth_map_back_est, normal_mask, K=None, step_size=step_size)
)
facets_back = cp.asnumpy(construct_facets_from(normal_mask))
faces_back = np.concatenate((facets_back[:, [1, 4, 3]], facets_back[:, [1, 3, 2]]), axis=0)
faces_front = np.concatenate((facets_back[:, [1, 2, 3]], facets_back[:, [1, 3, 4]]), axis=0)
vertices_front, faces_front = remove_stretched_faces(vertices_front, faces_front)
vertices_back, faces_back = remove_stretched_faces(vertices_back, faces_back)
front_mesh = clean_floats(trimesh.Trimesh(vertices_front, faces_front))
back_mesh = clean_floats(trimesh.Trimesh(vertices_back, faces_back))
result = {
"F_verts": torch.as_tensor(front_mesh.vertices).float(),
"F_faces": torch.as_tensor(front_mesh.faces).long(),
"B_verts": torch.as_tensor(back_mesh.vertices).float(),
"B_faces": torch.as_tensor(back_mesh.faces).long(),
"F_depth": torch.as_tensor(depth_map_front_est).float(),
"B_depth": torch.as_tensor(depth_map_back_est).float()
}
return result
def save_normal_tensor(in_tensor, idx, png_path, thickness=0.0):
os.makedirs(os.path.dirname(png_path), exist_ok=True)
normal_F_arr = tensor2arr(in_tensor["normal_F"][idx:idx + 1])
normal_B_arr = tensor2arr(in_tensor["normal_B"][idx:idx + 1])
mask_normal_arr = tensor2arr(in_tensor["image"][idx:idx + 1], True)
depth_F_arr = depth2arr(in_tensor["depth_F"][idx])
depth_B_arr = depth2arr(in_tensor["depth_B"][idx])
BNI_dict = {}
# clothed human
BNI_dict["normal_F"] = normal_F_arr
BNI_dict["normal_B"] = normal_B_arr
BNI_dict["mask"] = mask_normal_arr > 0.
BNI_dict["depth_F"] = depth_F_arr - 100. - thickness
BNI_dict["depth_B"] = 100. - depth_B_arr + thickness
BNI_dict["depth_mask"] = depth_F_arr != -1.0
np.save(png_path + ".npy", BNI_dict, allow_pickle=True)
return BNI_dict