Fully specified Python version

#2
by chris-rannou HF staff - opened
This view is limited to 50 files because it contains too many changes.  See the raw diff here.
Files changed (50) hide show
  1. .gitattributes +0 -6
  2. .gitignore +2 -3
  3. Dockerfile +0 -107
  4. README.md +7 -37
  5. app.py +0 -148
  6. apps/ICON.py +6 -9
  7. apps/__pycache__/app.cpython-38.pyc +0 -0
  8. apps/app.py +21 -0
  9. apps/infer.py +268 -144
  10. assets/garment_teaser.png +0 -0
  11. assets/intermediate_results.png +0 -0
  12. assets/teaser.gif +0 -0
  13. assets/thumbnail.png +0 -3
  14. configs/icon-filter.yaml +2 -2
  15. configs/icon-nofilter.yaml +2 -2
  16. configs/pamir.yaml +2 -2
  17. configs/pifu.yaml +2 -2
  18. environment.yaml +16 -0
  19. examples/22097467bffc92d4a5c4246f7d4edb75.png +0 -0
  20. examples/44c0f84c957b6b9bdf77662af5bb7078.png +0 -0
  21. examples/5a6a25963db2f667441d5076972c207c.png +0 -0
  22. examples/8da7ceb94669c2f65cbd28022e1f9876.png +0 -0
  23. examples/923d65f767c85a42212cae13fba3750b.png +0 -0
  24. examples/959c4c726a69901ce71b93a9242ed900.png +0 -0
  25. examples/c9856a2bc31846d684cbb965457fad59.png +0 -0
  26. examples/e1e7622af7074a022f5d96dc16672517.png +0 -0
  27. examples/fb9d20fdb93750584390599478ecf86e.png +0 -0
  28. examples/segmentation/003883.jpg +0 -0
  29. examples/segmentation/003883.json +136 -0
  30. examples/segmentation/028009.jpg +0 -0
  31. examples/segmentation/028009.json +191 -0
  32. examples/slack_trial2-000150.png +0 -0
  33. fetch_data.sh +60 -0
  34. install.sh +16 -0
  35. lib/common/render.py +4 -9
  36. lib/common/train_util.py +0 -2
  37. lib/dataloader_demo.py +58 -0
  38. lib/dataset/Evaluator.py +1 -1
  39. lib/dataset/PIFuDataset.py +80 -7
  40. lib/dataset/TestDataset.py +106 -18
  41. lib/dataset/mesh_util.py +70 -67
  42. lib/net/FBNet.py +1 -2
  43. lib/net/HGPIFuNet.py +8 -1
  44. lib/net/net_util.py +1 -1
  45. lib/pymaf/core/path_config.py +27 -12
  46. lib/pymaf/models/maf_extractor.py +5 -2
  47. lib/pymaf/models/res_module.py +1 -1
  48. lib/pymaf/models/smpl.py +3 -3
  49. lib/pymaf/utils/imutils.py +26 -20
  50. lib/renderer/mesh.py +1 -1
.gitattributes CHANGED
@@ -29,9 +29,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
- *tfevents* filter=lfs diff=lfs merge=lfs -text
33
- *.obj filter=lfs diff=lfs merge=lfs -text
34
- *.mp4 filter=lfs diff=lfs merge=lfs -text
35
- *.glb filter=lfs diff=lfs merge=lfs -text
36
- *.png filter=lfs diff=lfs merge=lfs -text
37
- *.gif filter=lfs diff=lfs merge=lfs -text
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
.gitignore CHANGED
@@ -4,15 +4,14 @@ data/thuman*
4
  __pycache__
5
  debug/
6
  log/
 
7
  .vscode
8
  !.gitignore
9
  force_push.sh
10
  .idea
 
11
  human_det/
12
  kaolin/
13
  neural_voxelization_layer/
14
  pytorch3d/
15
  force_push.sh
16
- results/
17
- gradio_cached_examples/
18
- gradio_queue.db
 
4
  __pycache__
5
  debug/
6
  log/
7
+ results/*
8
  .vscode
9
  !.gitignore
10
  force_push.sh
11
  .idea
12
+ smplx/
13
  human_det/
14
  kaolin/
15
  neural_voxelization_layer/
16
  pytorch3d/
17
  force_push.sh
 
 
 
Dockerfile DELETED
@@ -1,107 +0,0 @@
1
- FROM nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04
2
-
3
- ARG DEBIAN_FRONTEND=noninteractive
4
-
5
- RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
6
- curl \
7
- git \
8
- wget \
9
- freeglut3-dev \
10
- unzip \
11
- ffmpeg \
12
- libsm6 \
13
- libxext6 \
14
- libgomp1 \
15
- libfontconfig1 \
16
- libgl1-mesa-glx \
17
- libgl1-mesa-dev \
18
- libglfw3 \
19
- libglfw3-dev \
20
- libglew2.1 \
21
- libglew-dev \
22
- mesa-utils \
23
- libc6 \
24
- libxdamage1 \
25
- libxfixes3 \
26
- libxcb-glx0 \
27
- libxcb-dri2-0 \
28
- libxcb-dri3-0 \
29
- libxcb-present0 \
30
- libxcb-sync1 \
31
- libxshmfence1 \
32
- libxxf86vm1 \
33
- libxrender1 \
34
- libgbm1 \
35
- build-essential \
36
- libeigen3-dev \
37
- python3.8 \
38
- python3-pip \
39
- python-is-python3 \
40
- nvidia-cuda-toolkit \
41
- && rm -rf /var/lib/apt/lists/*
42
-
43
-
44
- # Set up a new user named "user" with user ID 1000
45
- RUN useradd -m -u 1000 user
46
-
47
- # Switch to the "user" user
48
- USER user
49
-
50
- FROM python:3.8
51
-
52
- ENV PYTHONUNBUFFERED=1
53
-
54
- # ENV TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0 7.5 8.0 8.6"
55
- # ENV TCNN_CUDA_ARCHITECTURES=86;80;75;70;61;60
56
- ENV FORCE_CUDA=1
57
-
58
- # Set the environment variable to specify the GPU device
59
- ENV CUDA_HOME=/usr/local/cuda
60
- # ENV CUDA_DEVICE_ORDER=PCI_BUS_ID
61
- # ENV CUDA_VISIBLE_DEVICES=0
62
-
63
- ENV PATH=${CUDA_HOME}/bin:/home/${USER_NAME}/.local/bin:/usr/bin:${PATH}
64
- ENV LD_LIBRARY_PATH=${CUDA_HOME}/lib64:/usr/lib:/usr/lib64:${LD_LIBRARY_PATH}
65
-
66
- # Set home to the user's home directory
67
- ENV HOME=/home/user \
68
- PATH=/home/user/.local/bin:$PATH \
69
- PYTHONPATH=$HOME/app:$PYTHONPATH \
70
- PYTHONUNBUFFERED=1 \
71
- GRADIO_ALLOW_FLAGGING=never \
72
- GRADIO_NUM_PORTS=1 \
73
- GRADIO_SERVER_NAME=0.0.0.0 \
74
- GRADIO_THEME=huggingface \
75
- SYSTEM=spaces
76
-
77
- RUN pip install --upgrade pip ninja
78
- RUN pip install setuptools==69.5.1
79
- RUN pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
80
-
81
- RUN python -c "import torch, os; print(torch.version.cuda); print(os.environ.get('CUDA_HOME'))"
82
- COPY requirements.txt /tmp
83
- RUN cd /tmp && pip install -r requirements.txt
84
-
85
- RUN pip install https://download.is.tue.mpg.de/icon/HF/kaolin-0.11.0-cp38-cp38-linux_x86_64.whl
86
- RUN pip install https://download.is.tue.mpg.de/icon/HF/pytorch3d-0.7.0-cp38-cp38-linux_x86_64.whl
87
- RUN pip install pyembree
88
-
89
- ENV TRANSFORMERS_CACHE=/tmp
90
- ENV MPLCONFIGDIR=/tmp
91
-
92
- # cannot cache function '_make_tree': no locator available for file '/usr/local/lib/python3.8/site-packages/pymatting/util/kdtree.py'
93
- ENV NUMBA_CACHE_DIR=/tmp/numba_cache
94
- ENV HF_HOME=$HOME/.cache/huggingface
95
- RUN mkdir -p $HF_HOME
96
-
97
- RUN chmod 777 -R $HOME
98
-
99
- # Copy the current directory contents into the container at $HOME/app setting the owner to the user
100
- COPY --chown=user . $HOME/app
101
-
102
- # Set the working directory to the user's home directory
103
- WORKDIR $HOME/app
104
-
105
- ENV DISPLAY=:0
106
-
107
- CMD ["python", "app.py"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,42 +1,12 @@
1
  ---
2
- title: ICON - Clothed Human Digitization
3
- metaTitle: ICON-Avatarify from Photo
4
  emoji: 🤼
5
  colorFrom: indigo
6
  colorTo: yellow
7
- sdk: docker
 
 
8
  pinned: true
9
- ---
10
-
11
- # ICON Clothed Human Digitization
12
- ### ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)
13
-
14
- <table>
15
- <th>
16
- <ul>
17
- <li><strong>Homepage</strong> <a href="http://icon.is.tue.mpg.de">icon.is.tue.mpg.de</a></li>
18
- <li><strong>Code</strong> <a href="https://github.com/YuliangXiu/ICON">YuliangXiu/ICON</a></li>
19
- <li><strong>Paper</strong> <a href="https://arxiv.org/abs/2112.09127">arXiv</a>, <a href="https://readpaper.com/paper/4569785684533977089">ReadPaper</a></li>
20
- <li><strong>Chatroom</strong> <a href="https://discord.gg/Vqa7KBGRyk">Discord</a></li>
21
- <li><strong>Colab Notebook</strong> <a href="https://colab.research.google.com/drive/1-AWeWhPvCTBX0KfMtgtMk10uPU05ihoA?usp=sharing">Google Colab</a></li>
22
- </ul>
23
- <a href="https://twitter.com/yuliangxiu"><img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/yuliangxiu?style=social"></a>
24
- <iframe src="https://ghbtns.com/github-btn.html?user=yuliangxiu&repo=ICON&type=star&count=true&v=2&size=small" frameborder="0" scrolling="0" width="100" height="20"></iframe>
25
- <a href="https://youtu.be/hZd6AYin2DE"><img alt="YouTube Video Views" src="https://img.shields.io/youtube/views/hZd6AYin2DE?style=social"></a>
26
- </th>
27
- <th>
28
- <iframe width="560" height="315" src="https://www.youtube.com/embed/hZd6AYin2DE" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
29
- </th>
30
- </table>
31
-
32
- #### Citation
33
- ```
34
- @inproceedings{xiu2022icon,
35
- title = {{ICON}: {I}mplicit {C}lothed humans {O}btained from {N}ormals},
36
- author = {Xiu, Yuliang and Yang, Jinlong and Tzionas, Dimitrios and Black, Michael J.},
37
- booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
38
- month = {June},
39
- year = {2022},
40
- pages = {13296-13306}
41
- }
42
- ```
 
1
  ---
2
+ title: ICON
3
+ metaTitle: "Image2Human by Yuliang Xiu"
4
  emoji: 🤼
5
  colorFrom: indigo
6
  colorTo: yellow
7
+ sdk: gradio
8
+ sdk_version: 3.1.1
9
+ app_file: ./apps/app.py
10
  pinned: true
11
+ python_version: 3.8.13
12
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py DELETED
@@ -1,148 +0,0 @@
1
- # install
2
-
3
-
4
- import glob
5
- import gradio as gr
6
- import numpy as np
7
- import os
8
- import subprocess
9
-
10
- from apps.infer import generate_model
11
-
12
- # running
13
-
14
- description = '''
15
- # ICON Clothed Human Digitization
16
- ### ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)
17
-
18
- <table>
19
- <th>
20
- <ul>
21
- <li><strong>Homepage</strong> <a href="http://icon.is.tue.mpg.de">icon.is.tue.mpg.de</a></li>
22
- <li><strong>Code</strong> <a href="https://github.com/YuliangXiu/ICON">YuliangXiu/ICON</a></li>
23
- <li><strong>Paper</strong> <a href="https://arxiv.org/abs/2112.09127">arXiv</a>, <a href="https://readpaper.com/paper/4569785684533977089">ReadPaper</a></li>
24
- <li><strong>Chatroom</strong> <a href="https://discord.gg/Vqa7KBGRyk">Discord</a></li>
25
- <li><strong>Colab Notebook</strong> <a href="https://colab.research.google.com/drive/1-AWeWhPvCTBX0KfMtgtMk10uPU05ihoA?usp=sharing">Google Colab</a></li>
26
- </ul>
27
- <a href="https://twitter.com/yuliangxiu"><img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/yuliangxiu?style=social"></a>
28
- <iframe src="https://ghbtns.com/github-btn.html?user=yuliangxiu&repo=ICON&type=star&count=true&v=2&size=small" frameborder="0" scrolling="0" width="100" height="20"></iframe>
29
- <a href="https://youtu.be/hZd6AYin2DE"><img alt="YouTube Video Views" src="https://img.shields.io/youtube/views/hZd6AYin2DE?style=social"></a>
30
- </th>
31
- <th>
32
- <iframe width="560" height="315" src="https://www.youtube.com/embed/hZd6AYin2DE" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
33
- </th>
34
- </table>
35
-
36
- <center>
37
- <a href="https://huggingface.co/spaces/Yuliang/ICON?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-lg-dark.svg"/></a>
38
- <h2> The reconstruction + refinement + video takes about 200 seconds for a single image. </h2>
39
- <h2><span style="color:red"> ICON is only suitable for humanoid images and will not work well on cartoons with non-human shapes.</span></h2>
40
- </center>
41
-
42
- <details>
43
-
44
- <summary>More</summary>
45
-
46
- #### Citation
47
- ```
48
- @inproceedings{xiu2022icon,
49
- title = {{ICON}: {I}mplicit {C}lothed humans {O}btained from {N}ormals},
50
- author = {Xiu, Yuliang and Yang, Jinlong and Tzionas, Dimitrios and Black, Michael J.},
51
- booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
52
- month = {June},
53
- year = {2022},
54
- pages = {13296-13306}
55
- }
56
- ```
57
-
58
- #### Acknowledgments:
59
-
60
- - [StyleGAN-Human, ECCV 2022](https://stylegan-human.github.io/)
61
- - [nagolinc/styleGanHuman_and_PIFu](https://huggingface.co/spaces/nagolinc/styleGanHuman_and_PIFu)
62
- - [radames/PIFu-Clothed-Human-Digitization](https://huggingface.co/spaces/radames/PIFu-Clothed-Human-Digitization)
63
-
64
- #### Image Credits
65
-
66
- * [Pinterest](https://www.pinterest.com/search/pins/?q=parkour&rs=sitelinks_searchbox)
67
-
68
- #### Related works
69
-
70
- * [ICON @ MPI](https://icon.is.tue.mpg.de/)
71
- * [MonoPort @ USC](https://xiuyuliang.cn/monoport)
72
- * [Phorhum @ Google](https://phorhum.github.io/)
73
- * [PIFuHD @ Meta](https://shunsukesaito.github.io/PIFuHD/)
74
- * [PaMIR @ Tsinghua](http://www.liuyebin.com/pamir/pamir.html)
75
-
76
- </details>
77
- '''
78
-
79
-
80
- def generate_image(seed, psi):
81
- iface = gr.Interface.load("spaces/hysts/StyleGAN-Human")
82
- img = iface(seed, psi)
83
- return img
84
-
85
-
86
- model_types = ['ICON', 'PIFu']
87
- examples_names = glob.glob('examples/*.png')
88
- examples_types = np.random.choice(
89
- model_types, len(examples_names), p=[0.6, 0.2, 0.2])
90
-
91
- examples = [list(item) for item in zip(examples_names, examples_types)]
92
-
93
- with gr.Blocks() as demo:
94
- gr.Markdown(description)
95
-
96
- out_lst = []
97
- with gr.Row():
98
- with gr.Column():
99
- with gr.Row():
100
- with gr.Column():
101
- seed = gr.inputs.Slider(
102
- 0, 1000, step=1, default=0, label='Seed (For Image Generation)')
103
- psi = gr.inputs.Slider(
104
- 0, 2, step=0.05, default=0.7, label='Truncation psi (For Image Generation)')
105
- radio_choice = gr.Radio(
106
- model_types, label='Method (For Reconstruction)', value='icon-filter')
107
- inp = gr.Image(type="filepath", label="Input Image")
108
- with gr.Row():
109
- btn_sample = gr.Button("Generate Image")
110
- btn_submit = gr.Button("Submit Image")
111
-
112
- gr.Examples(examples=examples,
113
- inputs=[inp, radio_choice],
114
- cache_examples=False,
115
- fn=generate_model,
116
- outputs=out_lst)
117
-
118
- out_vid = gr.Video(
119
- label="Image + Normal + SMPL Body + Clothed Human")
120
- out_vid_download = gr.File(
121
- label="Download Video, welcome share on Twitter with #ICON")
122
-
123
- with gr.Column():
124
- overlap_inp = gr.Image(
125
- type="filepath", label="Image Normal Overlap")
126
- out_final = gr.Model3D(
127
- clear_color=[0.0, 0.0, 0.0, 0.0], label="Clothed human")
128
- out_final_download = gr.File(
129
- label="Download clothed human mesh")
130
- out_smpl = gr.Model3D(
131
- clear_color=[0.0, 0.0, 0.0, 0.0], label="SMPL body")
132
- out_smpl_download = gr.File(label="Download SMPL body mesh")
133
- out_smpl_npy_download = gr.File(label="Download SMPL params")
134
-
135
- out_lst = [out_smpl, out_smpl_download, out_smpl_npy_download,
136
- out_final, out_final_download, out_vid, out_vid_download, overlap_inp]
137
-
138
- btn_submit.click(fn=generate_model, inputs=[
139
- inp, radio_choice], outputs=out_lst)
140
- btn_sample.click(fn=generate_image, inputs=[seed, psi], outputs=inp)
141
-
142
- if __name__ == "__main__":
143
-
144
- # demo.launch(debug=False, enable_queue=False,
145
- # auth=(os.environ['USER'], os.environ['PASSWORD']),
146
- # auth_message="Register at icon.is.tue.mpg.de to get HuggingFace username and password.")
147
-
148
- demo.launch(debug=True, enable_queue=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/ICON.py CHANGED
@@ -14,26 +14,21 @@
14
  #
15
  # Contact: ps-license@tuebingen.mpg.de
16
 
17
-
18
- import os
19
-
20
  from lib.common.seg3d_lossless import Seg3dLossless
21
  from lib.dataset.Evaluator import Evaluator
22
  from lib.net import HGPIFuNet
23
  from lib.common.train_util import *
 
24
  from lib.common.render import Render
25
  from lib.dataset.mesh_util import SMPLX, update_mesh_shape_prior_losses, get_visibility
26
  import warnings
27
  import logging
28
  import torch
29
- import lib.smplx as smplx
30
  import numpy as np
31
  from torch import nn
32
- import os.path as osp
33
-
34
  from skimage.transform import resize
35
  import pytorch_lightning as pl
36
- from huggingface_hub import cached_download
37
 
38
  torch.backends.cudnn.benchmark = True
39
 
@@ -102,8 +97,10 @@ class ICON(pl.LightningModule):
102
 
103
  self.get_smpl_model = lambda smpl_type, gender, age, v_template: smplx.create(
104
  self.smpl_data.model_dir,
105
- kid_template_path=cached_download(osp.join(self.smpl_data.model_dir,
106
- f"{smpl_type}/{smpl_type}_kid_template.npy"), use_auth_token=os.environ['ICON']),
 
 
107
  model_type=smpl_type,
108
  gender=gender,
109
  age=age,
 
14
  #
15
  # Contact: ps-license@tuebingen.mpg.de
16
 
 
 
 
17
  from lib.common.seg3d_lossless import Seg3dLossless
18
  from lib.dataset.Evaluator import Evaluator
19
  from lib.net import HGPIFuNet
20
  from lib.common.train_util import *
21
+ from lib.renderer.gl.init_gl import initialize_GL_context
22
  from lib.common.render import Render
23
  from lib.dataset.mesh_util import SMPLX, update_mesh_shape_prior_losses, get_visibility
24
  import warnings
25
  import logging
26
  import torch
27
+ import smplx
28
  import numpy as np
29
  from torch import nn
 
 
30
  from skimage.transform import resize
31
  import pytorch_lightning as pl
 
32
 
33
  torch.backends.cudnn.benchmark = True
34
 
 
97
 
98
  self.get_smpl_model = lambda smpl_type, gender, age, v_template: smplx.create(
99
  self.smpl_data.model_dir,
100
+ kid_template_path=osp.join(
101
+ osp.realpath(self.smpl_data.model_dir),
102
+ f"{smpl_type}/{smpl_type}_kid_template.npy",
103
+ ),
104
  model_type=smpl_type,
105
  gender=gender,
106
  age=age,
apps/__pycache__/app.cpython-38.pyc ADDED
Binary file (555 Bytes). View file
 
apps/app.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # install
2
+
3
+ import os
4
+ os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
5
+ os.environ["CUDA_VISIBLE_DEVICES"]="0"
6
+ try:
7
+ os.system("bash install.sh")
8
+ except Exception as e:
9
+ print(e)
10
+
11
+
12
+ # running
13
+
14
+ import gradio as gr
15
+
16
+ def image_classifier(inp):
17
+ return {'cat': 0.3, 'dog': 0.7}
18
+
19
+ demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
20
+ demo.launch(auth=("icon@tue.mpg.de", "icon_2022"),
21
+ auth_message="Register at icon.is.tue.mpg.de/download to get the username and password.")
apps/infer.py CHANGED
@@ -14,33 +14,34 @@
14
  #
15
  # Contact: ps-license@tuebingen.mpg.de
16
 
17
- import os
18
- import gc
19
-
20
  import logging
 
21
  from lib.common.config import cfg
 
22
  from lib.dataset.mesh_util import (
23
  load_checkpoint,
24
  update_mesh_shape_prior_losses,
 
25
  blend_rgb_norm,
26
  unwrap,
27
  remesh,
28
  tensor2variable,
29
- rot6d_to_rotmat
30
  )
31
 
32
  from lib.dataset.TestDataset import TestDataset
33
- from lib.common.render import query_color
34
  from lib.net.local_affine import LocalAffine
35
  from pytorch3d.structures import Meshes
36
  from apps.ICON import ICON
37
 
 
38
  from termcolor import colored
 
39
  import numpy as np
40
  from PIL import Image
41
  import trimesh
 
42
  import numpy as np
43
- from tqdm import tqdm
44
 
45
  import torch
46
  torch.backends.cudnn.benchmark = True
@@ -48,31 +49,36 @@ torch.backends.cudnn.benchmark = True
48
  logging.getLogger("trimesh").setLevel(logging.ERROR)
49
 
50
 
51
- def generate_model(in_path, model_type):
52
 
53
- torch.cuda.empty_cache()
54
-
55
- if model_type == 'ICON':
56
- model_type = 'icon-filter'
57
- else:
58
- model_type = model_type.lower()
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- config_dict = {'loop_smpl': 100,
61
- 'loop_cloth': 200,
62
- 'patience': 5,
63
- 'out_dir': './results',
64
- 'hps_type': 'pymaf',
65
- 'config': f"./configs/{model_type}.yaml"}
66
 
67
  # cfg read and merge
68
- cfg.merge_from_file(config_dict['config'])
69
  cfg.merge_from_file("./lib/pymaf/configs/pymaf_config.yaml")
70
 
71
- os.makedirs(config_dict['out_dir'], exist_ok=True)
72
-
73
  cfg_show_list = [
74
  "test_gpus",
75
- [0],
76
  "mcube_res",
77
  256,
78
  "clean_mesh",
@@ -82,21 +88,28 @@ def generate_model(in_path, model_type):
82
  cfg.merge_from_list(cfg_show_list)
83
  cfg.freeze()
84
 
85
- os.environ["CUDA_VISIBLE_DEVICES"] = "0"
86
- device = torch.device(f"cuda:0")
 
 
 
 
 
 
 
87
 
88
  # load model and dataloader
89
  model = ICON(cfg)
90
  model = load_checkpoint(model, cfg)
91
 
92
  dataset_param = {
93
- 'image_path': in_path,
94
- 'seg_dir': None,
95
  'has_det': True, # w/ or w/o detection
96
- 'hps_type': 'pymaf' # pymaf/pare/pixie
97
  }
98
 
99
- if config_dict['hps_type'] == "pixie" and "pamir" in config_dict['config']:
100
  print(colored("PIXIE isn't compatible with PaMIR, thus switch to PyMAF", "red"))
101
  dataset_param["hps_type"] = "pymaf"
102
 
@@ -126,10 +139,10 @@ def generate_model(in_path, model_type):
126
  data["global_orient"], device=device, requires_grad=True
127
  ) # [1,1,3,3]
128
 
129
- optimizer_smpl = torch.optim.Adam(
130
  [optimed_pose, optimed_trans, optimed_betas, optimed_orient],
131
  lr=1e-3,
132
- amsgrad=True,
133
  )
134
  scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
135
  optimizer_smpl,
@@ -137,45 +150,38 @@ def generate_model(in_path, model_type):
137
  factor=0.5,
138
  verbose=0,
139
  min_lr=1e-5,
140
- patience=config_dict['patience'],
141
  )
142
 
143
  losses = {
144
- # Cloth: Normal_recon - Normal_pred
145
- "cloth": {"weight": 1e1, "value": 0.0},
146
- # Cloth: [RT]_v1 - [RT]_v2 (v1-edge-v2)
147
- "stiffness": {"weight": 1e5, "value": 0.0},
148
- # Cloth: det(R) = 1
149
- "rigid": {"weight": 1e5, "value": 0.0},
150
- # Cloth: edge length
151
- "edge": {"weight": 0, "value": 0.0},
152
- # Cloth: normal consistency
153
- "nc": {"weight": 0, "value": 0.0},
154
- # Cloth: laplacian smoonth
155
- "laplacian": {"weight": 1e2, "value": 0.0},
156
- # Body: Normal_pred - Normal_smpl
157
- "normal": {"weight": 1e0, "value": 0.0},
158
- # Body: Silhouette_pred - Silhouette_smpl
159
- "silhouette": {"weight": 1e0, "value": 0.0},
160
  }
161
 
162
  # smpl optimization
163
 
164
- loop_smpl = tqdm(range(config_dict['loop_smpl']))
 
 
 
165
 
166
- for _ in loop_smpl:
 
 
167
 
168
  optimizer_smpl.zero_grad()
169
-
170
- # 6d_rot to rot_mat
171
- optimed_orient_mat = rot6d_to_rotmat(optimed_orient.view(-1,6)).unsqueeze(0)
172
- optimed_pose_mat = rot6d_to_rotmat(optimed_pose.view(-1,6)).unsqueeze(0)
173
 
174
  if dataset_param["hps_type"] != "pixie":
175
  smpl_out = dataset.smpl_model(
176
  betas=optimed_betas,
177
- body_pose=optimed_pose_mat,
178
- global_orient=optimed_orient_mat,
179
  pose2rot=False,
180
  )
181
 
@@ -185,8 +191,8 @@ def generate_model(in_path, model_type):
185
  smpl_verts, _, _ = dataset.smpl_model(
186
  shape_params=optimed_betas,
187
  expression_params=tensor2variable(data["exp"], device),
188
- body_pose=optimed_pose_mat,
189
- global_pose=optimed_orient_mat,
190
  jaw_pose=tensor2variable(data["jaw_pose"], device),
191
  left_hand_pose=tensor2variable(
192
  data["left_hand_pose"], device),
@@ -214,7 +220,12 @@ def generate_model(in_path, model_type):
214
  diff_B_smpl = torch.abs(
215
  in_tensor["T_normal_B"] - in_tensor["normal_B"])
216
 
217
- losses["normal"]["value"] = (diff_F_smpl + diff_B_smpl).mean()
 
 
 
 
 
218
 
219
  # silhouette loss
220
  smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0]
@@ -239,6 +250,33 @@ def generate_model(in_path, model_type):
239
  pbar_desc += f"Total: {smpl_loss:.3f}"
240
  loop_smpl.set_description(pbar_desc)
241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
  smpl_loss.backward()
243
  optimizer_smpl.step()
244
  scheduler_smpl.step(smpl_loss)
@@ -249,20 +287,18 @@ def generate_model(in_path, model_type):
249
  # 1. SMPL Fitting
250
  # 2. Clothes Refinement
251
 
252
- os.makedirs(os.path.join(config_dict['out_dir'], cfg.name,
253
  "refinement"), exist_ok=True)
254
 
255
  # visualize the final results in self-rotation mode
256
- os.makedirs(os.path.join(config_dict['out_dir'],
257
- cfg.name, "vid"), exist_ok=True)
258
 
259
  # final results rendered as image
260
  # 1. Render the final fitted SMPL (xxx_smpl.png)
261
  # 2. Render the final reconstructed clothed human (xxx_cloth.png)
262
  # 3. Blend the original image with predicted cloth normal (xxx_overlap.png)
263
 
264
- os.makedirs(os.path.join(config_dict['out_dir'],
265
- cfg.name, "png"), exist_ok=True)
266
 
267
  # final reconstruction meshes
268
  # 1. SMPL mesh (xxx_smpl.obj)
@@ -271,41 +307,54 @@ def generate_model(in_path, model_type):
271
  # 4. remeshed clothed mesh (xxx_remesh.obj)
272
  # 5. refined clothed mesh (xxx_refine.obj)
273
 
274
- os.makedirs(os.path.join(config_dict['out_dir'],
275
- cfg.name, "obj"), exist_ok=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276
 
277
- norm_pred_F = (
278
  ((in_tensor["normal_F"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
279
  .detach()
280
  .cpu()
281
  .numpy()
282
  .astype(np.uint8)
283
  )
284
-
285
- norm_pred_B = (
286
- ((in_tensor["normal_B"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
287
- .detach()
288
- .cpu()
289
- .numpy()
290
- .astype(np.uint8)
291
- )
292
 
293
- norm_orig_F = unwrap(norm_pred_F, data)
294
- norm_orig_B = unwrap(norm_pred_B, data)
295
-
296
  mask_orig = unwrap(
297
  np.repeat(
298
  data["mask"].permute(1, 2, 0).detach().cpu().numpy(), 3, axis=2
299
  ).astype(np.uint8),
300
  data,
301
  )
302
- rgb_norm_F = blend_rgb_norm(data["ori_image"], norm_orig_F, mask_orig)
303
- rgb_norm_B = blend_rgb_norm(data["ori_image"], norm_orig_B, mask_orig)
304
 
305
  Image.fromarray(
306
  np.concatenate(
307
- [data["ori_image"].astype(np.uint8), rgb_norm_F, rgb_norm_B], axis=1)
308
- ).save(os.path.join(config_dict['out_dir'], cfg.name, f"png/{data['name']}_overlap.png"))
309
 
310
  smpl_obj = trimesh.Trimesh(
311
  in_tensor["smpl_verts"].detach().cpu()[0] *
@@ -314,24 +363,23 @@ def generate_model(in_path, model_type):
314
  process=False,
315
  maintains_order=True
316
  )
317
- smpl_obj.visual.vertex_colors = (smpl_obj.vertex_normals+1.0)*255.0*0.5
318
- smpl_obj.export(
319
- f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.obj")
320
  smpl_obj.export(
321
- f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.glb")
322
 
323
  smpl_info = {'betas': optimed_betas,
324
- 'pose': optimed_pose_mat,
325
- 'orient': optimed_orient_mat,
326
  'trans': optimed_trans}
327
 
328
  np.save(
329
- f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.npy", smpl_info, allow_pickle=True)
330
 
331
  # ------------------------------------------------------------------------------------------------------------------
332
 
333
  # cloth optimization
334
 
 
 
335
  # cloth recon
336
  in_tensor.update(
337
  dataset.compute_vis_cmap(
@@ -356,15 +404,13 @@ def generate_model(in_path, model_type):
356
  recon_obj = trimesh.Trimesh(
357
  verts_pr, faces_pr, process=False, maintains_order=True
358
  )
359
- recon_obj.visual.vertex_colors = (
360
- recon_obj.vertex_normals+1.0)*255.0*0.5
361
  recon_obj.export(
362
- os.path.join(config_dict['out_dir'], cfg.name,
363
  f"obj/{data['name']}_recon.obj")
364
  )
365
 
366
  # Isotropic Explicit Remeshing for better geometry topology
367
- verts_refine, faces_refine = remesh(os.path.join(config_dict['out_dir'], cfg.name,
368
  f"obj/{data['name']}_recon.obj"), 0.5, device)
369
 
370
  # define local_affine deform verts
@@ -380,16 +426,26 @@ def generate_model(in_path, model_type):
380
  factor=0.1,
381
  verbose=0,
382
  min_lr=1e-5,
383
- patience=config_dict['patience'],
384
  )
385
 
 
 
 
 
 
 
 
 
386
  final = None
387
 
388
- if config_dict['loop_cloth'] > 0:
389
 
390
- loop_cloth = tqdm(range(config_dict['loop_cloth']))
391
 
392
- for _ in loop_cloth:
 
 
393
 
394
  optimizer_cloth.zero_grad()
395
 
@@ -426,67 +482,135 @@ def generate_model(in_path, model_type):
426
  loop_cloth.set_description(pbar_desc)
427
 
428
  # update params
429
- cloth_loss.backward()
430
  optimizer_cloth.step()
431
  scheduler_cloth.step(cloth_loss)
432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433
  final = trimesh.Trimesh(
434
  mesh_pr.verts_packed().detach().squeeze(0).cpu(),
435
  mesh_pr.faces_packed().detach().squeeze(0).cpu(),
436
  process=False, maintains_order=True
437
  )
438
-
439
- # only with front texture
440
- tex_colors = query_color(
441
  mesh_pr.verts_packed().detach().squeeze(0).cpu(),
442
  mesh_pr.faces_packed().detach().squeeze(0).cpu(),
443
  in_tensor["image"],
444
  device=device,
445
  )
446
-
447
- # full normal textures
448
- norm_colors = (mesh_pr.verts_normals_padded().squeeze(
449
- 0).detach().cpu() + 1.0) * 0.5 * 255.0
450
-
451
- final.visual.vertex_colors = tex_colors
452
- final.export(
453
- f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.obj")
454
-
455
- final.visual.vertex_colors = norm_colors
456
  final.export(
457
- f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.glb")
458
 
459
- # always export visualized video regardless of the cloth refinment
460
- verts_lst = [smpl_obj.vertices, final.vertices]
461
- faces_lst = [smpl_obj.faces, final.faces]
462
-
463
- # self-rotated video
464
- dataset.render.load_meshes(
465
- verts_lst, faces_lst)
466
- dataset.render.get_rendered_video(
467
- [data["ori_image"], rgb_norm_F, rgb_norm_B],
468
- os.path.join(config_dict['out_dir'], cfg.name,
469
- f"vid/{data['name']}_cloth.mp4"),
470
  )
471
 
472
- smpl_obj_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.obj"
473
- smpl_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.glb"
474
- smpl_npy_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.npy"
475
- refine_obj_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.obj"
476
- refine_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.glb"
477
-
478
- video_path = os.path.join(
479
- config_dict['out_dir'], cfg.name, f"vid/{data['name']}_cloth.mp4")
480
- overlap_path = os.path.join(
481
- config_dict['out_dir'], cfg.name, f"png/{data['name']}_overlap.png")
482
-
483
- # clean all the variables
484
- for element in dir():
485
- if 'path' not in element:
486
- del locals()[element]
487
- gc.collect()
488
- torch.cuda.empty_cache()
489
-
490
- return [smpl_glb_path, smpl_obj_path,smpl_npy_path,
491
- refine_glb_path, refine_obj_path,
492
- video_path, video_path, overlap_path]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  #
15
  # Contact: ps-license@tuebingen.mpg.de
16
 
 
 
 
17
  import logging
18
+ from lib.common.render import query_color, image2vid
19
  from lib.common.config import cfg
20
+ from lib.common.cloth_extraction import extract_cloth
21
  from lib.dataset.mesh_util import (
22
  load_checkpoint,
23
  update_mesh_shape_prior_losses,
24
+ get_optim_grid_image,
25
  blend_rgb_norm,
26
  unwrap,
27
  remesh,
28
  tensor2variable,
29
+ normal_loss
30
  )
31
 
32
  from lib.dataset.TestDataset import TestDataset
 
33
  from lib.net.local_affine import LocalAffine
34
  from pytorch3d.structures import Meshes
35
  from apps.ICON import ICON
36
 
37
+ import os
38
  from termcolor import colored
39
+ import argparse
40
  import numpy as np
41
  from PIL import Image
42
  import trimesh
43
+ import pickle
44
  import numpy as np
 
45
 
46
  import torch
47
  torch.backends.cudnn.benchmark = True
 
49
  logging.getLogger("trimesh").setLevel(logging.ERROR)
50
 
51
 
52
+ if __name__ == "__main__":
53
 
54
+ # loading cfg file
55
+ parser = argparse.ArgumentParser()
56
+
57
+ parser.add_argument("-gpu", "--gpu_device", type=int, default=0)
58
+ parser.add_argument("-colab", action="store_true")
59
+ parser.add_argument("-loop_smpl", "--loop_smpl", type=int, default=100)
60
+ parser.add_argument("-patience", "--patience", type=int, default=5)
61
+ parser.add_argument("-vis_freq", "--vis_freq", type=int, default=10)
62
+ parser.add_argument("-loop_cloth", "--loop_cloth", type=int, default=200)
63
+ parser.add_argument("-hps_type", "--hps_type", type=str, default="pymaf")
64
+ parser.add_argument("-export_video", action="store_true")
65
+ parser.add_argument("-in_dir", "--in_dir", type=str, default="./examples")
66
+ parser.add_argument("-out_dir", "--out_dir",
67
+ type=str, default="./results")
68
+ parser.add_argument('-seg_dir', '--seg_dir', type=str, default=None)
69
+ parser.add_argument(
70
+ "-cfg", "--config", type=str, default="./configs/icon-filter.yaml"
71
+ )
72
 
73
+ args = parser.parse_args()
 
 
 
 
 
74
 
75
  # cfg read and merge
76
+ cfg.merge_from_file(args.config)
77
  cfg.merge_from_file("./lib/pymaf/configs/pymaf_config.yaml")
78
 
 
 
79
  cfg_show_list = [
80
  "test_gpus",
81
+ [args.gpu_device],
82
  "mcube_res",
83
  256,
84
  "clean_mesh",
 
88
  cfg.merge_from_list(cfg_show_list)
89
  cfg.freeze()
90
 
91
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
92
+ device = torch.device(f"cuda:{args.gpu_device}")
93
+
94
+ if args.colab:
95
+ print(colored("colab environment...", "red"))
96
+ from tqdm.notebook import tqdm
97
+ else:
98
+ print(colored("normal environment...", "red"))
99
+ from tqdm import tqdm
100
 
101
  # load model and dataloader
102
  model = ICON(cfg)
103
  model = load_checkpoint(model, cfg)
104
 
105
  dataset_param = {
106
+ 'image_dir': args.in_dir,
107
+ 'seg_dir': args.seg_dir,
108
  'has_det': True, # w/ or w/o detection
109
+ 'hps_type': args.hps_type # pymaf/pare/pixie
110
  }
111
 
112
+ if args.hps_type == "pixie" and "pamir" in args.config:
113
  print(colored("PIXIE isn't compatible with PaMIR, thus switch to PyMAF", "red"))
114
  dataset_param["hps_type"] = "pymaf"
115
 
 
139
  data["global_orient"], device=device, requires_grad=True
140
  ) # [1,1,3,3]
141
 
142
+ optimizer_smpl = torch.optim.SGD(
143
  [optimed_pose, optimed_trans, optimed_betas, optimed_orient],
144
  lr=1e-3,
145
+ momentum=0.9,
146
  )
147
  scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
148
  optimizer_smpl,
 
150
  factor=0.5,
151
  verbose=0,
152
  min_lr=1e-5,
153
+ patience=args.patience,
154
  )
155
 
156
  losses = {
157
+ "cloth": {"weight": 1e1, "value": 0.0}, # Cloth: Normal_recon - Normal_pred
158
+ "stiffness": {"weight": 1e5, "value": 0.0}, # Cloth: [RT]_v1 - [RT]_v2 (v1-edge-v2)
159
+ "rigid": {"weight": 1e5, "value": 0.0}, # Cloth: det(R) = 1
160
+ "edge": {"weight": 0, "value": 0.0}, # Cloth: edge length
161
+ "nc": {"weight": 0, "value": 0.0}, # Cloth: normal consistency
162
+ "laplacian": {"weight": 1e2, "value": 0.0}, # Cloth: laplacian smoonth
163
+ "normal": {"weight": 1e0, "value": 0.0}, # Body: Normal_pred - Normal_smpl
164
+ "silhouette": {"weight": 1e1, "value": 0.0}, # Body: Silhouette_pred - Silhouette_smpl
 
 
 
 
 
 
 
 
165
  }
166
 
167
  # smpl optimization
168
 
169
+ loop_smpl = tqdm(
170
+ range(args.loop_smpl if cfg.net.prior_type != "pifu" else 1))
171
+
172
+ per_data_lst = []
173
 
174
+ for i in loop_smpl:
175
+
176
+ per_loop_lst = []
177
 
178
  optimizer_smpl.zero_grad()
 
 
 
 
179
 
180
  if dataset_param["hps_type"] != "pixie":
181
  smpl_out = dataset.smpl_model(
182
  betas=optimed_betas,
183
+ body_pose=optimed_pose,
184
+ global_orient=optimed_orient,
185
  pose2rot=False,
186
  )
187
 
 
191
  smpl_verts, _, _ = dataset.smpl_model(
192
  shape_params=optimed_betas,
193
  expression_params=tensor2variable(data["exp"], device),
194
+ body_pose=optimed_pose,
195
+ global_pose=optimed_orient,
196
  jaw_pose=tensor2variable(data["jaw_pose"], device),
197
  left_hand_pose=tensor2variable(
198
  data["left_hand_pose"], device),
 
220
  diff_B_smpl = torch.abs(
221
  in_tensor["T_normal_B"] - in_tensor["normal_B"])
222
 
223
+ loss_F_smpl = normal_loss(
224
+ in_tensor["T_normal_F"], in_tensor["normal_F"])
225
+ loss_B_smpl = normal_loss(
226
+ in_tensor["T_normal_B"], in_tensor["normal_B"])
227
+
228
+ losses["normal"]["value"] = (loss_F_smpl + loss_B_smpl).mean()
229
 
230
  # silhouette loss
231
  smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0]
 
250
  pbar_desc += f"Total: {smpl_loss:.3f}"
251
  loop_smpl.set_description(pbar_desc)
252
 
253
+ if i % args.vis_freq == 0:
254
+
255
+ per_loop_lst.extend(
256
+ [
257
+ in_tensor["image"],
258
+ in_tensor["T_normal_F"],
259
+ in_tensor["normal_F"],
260
+ diff_F_smpl / 2.0,
261
+ diff_S[:, :512].unsqueeze(
262
+ 0).unsqueeze(0).repeat(1, 3, 1, 1),
263
+ ]
264
+ )
265
+ per_loop_lst.extend(
266
+ [
267
+ in_tensor["image"],
268
+ in_tensor["T_normal_B"],
269
+ in_tensor["normal_B"],
270
+ diff_B_smpl / 2.0,
271
+ diff_S[:, 512:].unsqueeze(
272
+ 0).unsqueeze(0).repeat(1, 3, 1, 1),
273
+ ]
274
+ )
275
+ per_data_lst.append(
276
+ get_optim_grid_image(
277
+ per_loop_lst, None, nrow=5, type="smpl")
278
+ )
279
+
280
  smpl_loss.backward()
281
  optimizer_smpl.step()
282
  scheduler_smpl.step(smpl_loss)
 
287
  # 1. SMPL Fitting
288
  # 2. Clothes Refinement
289
 
290
+ os.makedirs(os.path.join(args.out_dir, cfg.name,
291
  "refinement"), exist_ok=True)
292
 
293
  # visualize the final results in self-rotation mode
294
+ os.makedirs(os.path.join(args.out_dir, cfg.name, "vid"), exist_ok=True)
 
295
 
296
  # final results rendered as image
297
  # 1. Render the final fitted SMPL (xxx_smpl.png)
298
  # 2. Render the final reconstructed clothed human (xxx_cloth.png)
299
  # 3. Blend the original image with predicted cloth normal (xxx_overlap.png)
300
 
301
+ os.makedirs(os.path.join(args.out_dir, cfg.name, "png"), exist_ok=True)
 
302
 
303
  # final reconstruction meshes
304
  # 1. SMPL mesh (xxx_smpl.obj)
 
307
  # 4. remeshed clothed mesh (xxx_remesh.obj)
308
  # 5. refined clothed mesh (xxx_refine.obj)
309
 
310
+ os.makedirs(os.path.join(args.out_dir, cfg.name, "obj"), exist_ok=True)
311
+
312
+ if cfg.net.prior_type != "pifu":
313
+
314
+ per_data_lst[0].save(
315
+ os.path.join(
316
+ args.out_dir, cfg.name, f"refinement/{data['name']}_smpl.gif"
317
+ ),
318
+ save_all=True,
319
+ append_images=per_data_lst[1:],
320
+ duration=500,
321
+ loop=0,
322
+ )
323
+
324
+ if args.vis_freq == 1:
325
+ image2vid(
326
+ per_data_lst,
327
+ os.path.join(
328
+ args.out_dir, cfg.name, f"refinement/{data['name']}_smpl.avi"
329
+ ),
330
+ )
331
+
332
+ per_data_lst[-1].save(
333
+ os.path.join(args.out_dir, cfg.name,
334
+ f"png/{data['name']}_smpl.png")
335
+ )
336
 
337
+ norm_pred = (
338
  ((in_tensor["normal_F"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
339
  .detach()
340
  .cpu()
341
  .numpy()
342
  .astype(np.uint8)
343
  )
 
 
 
 
 
 
 
 
344
 
345
+ norm_orig = unwrap(norm_pred, data)
 
 
346
  mask_orig = unwrap(
347
  np.repeat(
348
  data["mask"].permute(1, 2, 0).detach().cpu().numpy(), 3, axis=2
349
  ).astype(np.uint8),
350
  data,
351
  )
352
+ rgb_norm = blend_rgb_norm(data["ori_image"], norm_orig, mask_orig)
 
353
 
354
  Image.fromarray(
355
  np.concatenate(
356
+ [data["ori_image"].astype(np.uint8), rgb_norm], axis=1)
357
+ ).save(os.path.join(args.out_dir, cfg.name, f"png/{data['name']}_overlap.png"))
358
 
359
  smpl_obj = trimesh.Trimesh(
360
  in_tensor["smpl_verts"].detach().cpu()[0] *
 
363
  process=False,
364
  maintains_order=True
365
  )
 
 
 
366
  smpl_obj.export(
367
+ f"{args.out_dir}/{cfg.name}/obj/{data['name']}_smpl.obj")
368
 
369
  smpl_info = {'betas': optimed_betas,
370
+ 'pose': optimed_pose,
371
+ 'orient': optimed_orient,
372
  'trans': optimed_trans}
373
 
374
  np.save(
375
+ f"{args.out_dir}/{cfg.name}/obj/{data['name']}_smpl.npy", smpl_info, allow_pickle=True)
376
 
377
  # ------------------------------------------------------------------------------------------------------------------
378
 
379
  # cloth optimization
380
 
381
+ per_data_lst = []
382
+
383
  # cloth recon
384
  in_tensor.update(
385
  dataset.compute_vis_cmap(
 
404
  recon_obj = trimesh.Trimesh(
405
  verts_pr, faces_pr, process=False, maintains_order=True
406
  )
 
 
407
  recon_obj.export(
408
+ os.path.join(args.out_dir, cfg.name,
409
  f"obj/{data['name']}_recon.obj")
410
  )
411
 
412
  # Isotropic Explicit Remeshing for better geometry topology
413
+ verts_refine, faces_refine = remesh(os.path.join(args.out_dir, cfg.name,
414
  f"obj/{data['name']}_recon.obj"), 0.5, device)
415
 
416
  # define local_affine deform verts
 
426
  factor=0.1,
427
  verbose=0,
428
  min_lr=1e-5,
429
+ patience=args.patience,
430
  )
431
 
432
+ with torch.no_grad():
433
+ per_loop_lst = []
434
+ rotate_recon_lst = dataset.render.get_rgb_image(cam_ids=[
435
+ 0, 1, 2, 3])
436
+ per_loop_lst.extend(rotate_recon_lst)
437
+ per_data_lst.append(get_optim_grid_image(
438
+ per_loop_lst, None, type="cloth"))
439
+
440
  final = None
441
 
442
+ if args.loop_cloth > 0:
443
 
444
+ loop_cloth = tqdm(range(args.loop_cloth))
445
 
446
+ for i in loop_cloth:
447
+
448
+ per_loop_lst = []
449
 
450
  optimizer_cloth.zero_grad()
451
 
 
482
  loop_cloth.set_description(pbar_desc)
483
 
484
  # update params
485
+ cloth_loss.backward(retain_graph=True)
486
  optimizer_cloth.step()
487
  scheduler_cloth.step(cloth_loss)
488
 
489
+ # for vis
490
+ with torch.no_grad():
491
+ if i % args.vis_freq == 0:
492
+
493
+ rotate_recon_lst = dataset.render.get_rgb_image(cam_ids=[
494
+ 0, 1, 2, 3])
495
+
496
+ per_loop_lst.extend(
497
+ [
498
+ in_tensor["image"],
499
+ in_tensor["P_normal_F"],
500
+ in_tensor["normal_F"],
501
+ diff_F_cloth / 2.0,
502
+ ]
503
+ )
504
+ per_loop_lst.extend(
505
+ [
506
+ in_tensor["image"],
507
+ in_tensor["P_normal_B"],
508
+ in_tensor["normal_B"],
509
+ diff_B_cloth / 2.0,
510
+ ]
511
+ )
512
+ per_loop_lst.extend(rotate_recon_lst)
513
+ per_data_lst.append(
514
+ get_optim_grid_image(
515
+ per_loop_lst, None, type="cloth")
516
+ )
517
+
518
+ # gif for optimization
519
+ per_data_lst[1].save(
520
+ os.path.join(
521
+ args.out_dir, cfg.name, f"refinement/{data['name']}_cloth.gif"
522
+ ),
523
+ save_all=True,
524
+ append_images=per_data_lst[2:],
525
+ duration=500,
526
+ loop=0,
527
+ )
528
+
529
+ if args.vis_freq == 1:
530
+ image2vid(
531
+ per_data_lst,
532
+ os.path.join(
533
+ args.out_dir, cfg.name, f"refinement/{data['name']}_cloth.avi"
534
+ ),
535
+ )
536
+
537
  final = trimesh.Trimesh(
538
  mesh_pr.verts_packed().detach().squeeze(0).cpu(),
539
  mesh_pr.faces_packed().detach().squeeze(0).cpu(),
540
  process=False, maintains_order=True
541
  )
542
+ final_colors = query_color(
 
 
543
  mesh_pr.verts_packed().detach().squeeze(0).cpu(),
544
  mesh_pr.faces_packed().detach().squeeze(0).cpu(),
545
  in_tensor["image"],
546
  device=device,
547
  )
548
+ final.visual.vertex_colors = final_colors
 
 
 
 
 
 
 
 
 
549
  final.export(
550
+ f"{args.out_dir}/{cfg.name}/obj/{data['name']}_refine.obj")
551
 
552
+ # always export visualized png regardless of the cloth refinment
553
+ per_data_lst[-1].save(
554
+ os.path.join(args.out_dir, cfg.name,
555
+ f"png/{data['name']}_cloth.png")
 
 
 
 
 
 
 
556
  )
557
 
558
+ # always export visualized video regardless of the cloth refinment
559
+ if args.export_video:
560
+ if final is not None:
561
+ verts_lst = [verts_pr, final.vertices]
562
+ faces_lst = [faces_pr, final.faces]
563
+ else:
564
+ verts_lst = [verts_pr]
565
+ faces_lst = [faces_pr]
566
+
567
+ # self-rotated video
568
+ dataset.render.load_meshes(
569
+ verts_lst, faces_lst)
570
+ dataset.render.get_rendered_video(
571
+ [data["ori_image"], rgb_norm],
572
+ os.path.join(args.out_dir, cfg.name,
573
+ f"vid/{data['name']}_cloth.mp4"),
574
+ )
575
+
576
+ # garment extraction from deepfashion images
577
+ if not (args.seg_dir is None):
578
+ if final is not None:
579
+ recon_obj = final.copy()
580
+
581
+ os.makedirs(os.path.join(
582
+ args.out_dir, cfg.name, "clothes"), exist_ok=True)
583
+ os.makedirs(os.path.join(args.out_dir, cfg.name,
584
+ "clothes", "info"), exist_ok=True)
585
+ for seg in data['segmentations']:
586
+ # These matrices work for PyMaf, not sure about the other hps type
587
+ K = np.array([[1.0000, 0.0000, 0.0000, 0.0000],
588
+ [0.0000, 1.0000, 0.0000, 0.0000],
589
+ [0.0000, 0.0000, -0.5000, 0.0000],
590
+ [-0.0000, -0.0000, 0.5000, 1.0000]]).T
591
+
592
+ R = np.array([[-1., 0., 0.],
593
+ [0., 1., 0.],
594
+ [0., 0., -1.]])
595
+
596
+ t = np.array([[-0., -0., 100.]])
597
+ clothing_obj = extract_cloth(recon_obj, seg, K, R, t, smpl_obj)
598
+ if clothing_obj is not None:
599
+ cloth_type = seg['type'].replace(' ', '_')
600
+ cloth_info = {
601
+ 'betas': optimed_betas,
602
+ 'body_pose': optimed_pose,
603
+ 'global_orient': optimed_orient,
604
+ 'pose2rot': False,
605
+ 'clothing_type': cloth_type,
606
+ }
607
+
608
+ file_id = f"{data['name']}_{cloth_type}"
609
+ with open(os.path.join(args.out_dir, cfg.name, "clothes", "info", f"{file_id}_info.pkl"), 'wb') as fp:
610
+ pickle.dump(cloth_info, fp)
611
+
612
+ clothing_obj.export(os.path.join(
613
+ args.out_dir, cfg.name, "clothes", f"{file_id}.obj"))
614
+ else:
615
+ print(
616
+ f"Unable to extract clothing of type {seg['type']} from image {data['name']}")
assets/garment_teaser.png CHANGED

Git LFS Details

  • SHA256: 1bf1fde8dcec40a5b50a5eb3ba6cdeefad344348271b9b087d9f327efc5db845
  • Pointer size: 131 Bytes
  • Size of remote file: 594 kB
assets/intermediate_results.png CHANGED

Git LFS Details

  • SHA256: 2daa92446130e9bf410ba55889740537c68f9c51f1799f89f2575581870c0d80
  • Pointer size: 131 Bytes
  • Size of remote file: 301 kB
assets/teaser.gif CHANGED

Git LFS Details

  • SHA256: 0955111cbe83559ee8065b15dfed9f52da9e8190297c715d74d1a30cdee7cad5
  • Pointer size: 131 Bytes
  • Size of remote file: 382 kB
assets/thumbnail.png DELETED

Git LFS Details

  • SHA256: 5259d6e413242c63afe88027122eed783612ff9a9e48b9a9c51313f6bf66fb94
  • Pointer size: 130 Bytes
  • Size of remote file: 51.5 kB
configs/icon-filter.yaml CHANGED
@@ -1,7 +1,7 @@
1
  name: icon-filter
2
  ckpt_dir: "./data/ckpt/"
3
- resume_path: "https://huggingface.co/Yuliang/ICON/resolve/main/icon-filter.ckpt"
4
- normal_path: "https://huggingface.co/Yuliang/ICON/resolve/main/normal.ckpt"
5
 
6
  test_mode: True
7
  batch_size: 1
 
1
  name: icon-filter
2
  ckpt_dir: "./data/ckpt/"
3
+ resume_path: "./data/ckpt/icon-filter.ckpt"
4
+ normal_path: "./data/ckpt/normal.ckpt"
5
 
6
  test_mode: True
7
  batch_size: 1
configs/icon-nofilter.yaml CHANGED
@@ -1,7 +1,7 @@
1
  name: icon-nofilter
2
  ckpt_dir: "./data/ckpt/"
3
- resume_path: "https://huggingface.co/Yuliang/ICON/resolve/main/icon-nofilter.ckpt"
4
- normal_path: "https://huggingface.co/Yuliang/ICON/resolve/main/normal.ckpt"
5
 
6
  test_mode: True
7
  batch_size: 1
 
1
  name: icon-nofilter
2
  ckpt_dir: "./data/ckpt/"
3
+ resume_path: "./data/ckpt/icon-nofilter.ckpt"
4
+ normal_path: "./data/ckpt/normal.ckpt"
5
 
6
  test_mode: True
7
  batch_size: 1
configs/pamir.yaml CHANGED
@@ -1,7 +1,7 @@
1
  name: pamir
2
  ckpt_dir: "./data/ckpt/"
3
- resume_path: "https://huggingface.co/Yuliang/ICON/resolve/main/pamir.ckpt"
4
- normal_path: "https://huggingface.co/Yuliang/ICON/resolve/main/normal.ckpt"
5
 
6
  test_mode: True
7
  batch_size: 1
 
1
  name: pamir
2
  ckpt_dir: "./data/ckpt/"
3
+ resume_path: "./data/ckpt/pamir.ckpt"
4
+ normal_path: "./data/ckpt/normal.ckpt"
5
 
6
  test_mode: True
7
  batch_size: 1
configs/pifu.yaml CHANGED
@@ -1,7 +1,7 @@
1
  name: pifu
2
  ckpt_dir: "./data/ckpt/"
3
- resume_path: "https://huggingface.co/Yuliang/ICON/resolve/main/pifu.ckpt"
4
- normal_path: "https://huggingface.co/Yuliang/ICON/resolve/main/normal.ckpt"
5
 
6
  test_mode: True
7
  batch_size: 1
 
1
  name: pifu
2
  ckpt_dir: "./data/ckpt/"
3
+ resume_path: "./data/ckpt/pifu.ckpt"
4
+ normal_path: "./data/ckpt/normal.ckpt"
5
 
6
  test_mode: True
7
  batch_size: 1
environment.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: icon
2
+ channels:
3
+ - pytorch-lts
4
+ - nvidia
5
+ - conda-forge
6
+ - fvcore
7
+ - iopath
8
+ - bottler
9
+ - defaults
10
+ dependencies:
11
+ - pytorch
12
+ - torchvision
13
+ - fvcore
14
+ - iopath
15
+ - nvidiacub
16
+ - pyembree
examples/22097467bffc92d4a5c4246f7d4edb75.png CHANGED

Git LFS Details

  • SHA256: f37625631d1cea79fca0c77d6a809e827f86d2ddc51515abaade0801b9ef1a57
  • Pointer size: 131 Bytes
  • Size of remote file: 448 kB
examples/44c0f84c957b6b9bdf77662af5bb7078.png CHANGED

Git LFS Details

  • SHA256: b5ccc3ff6e99b32fed04bdd8f72873e7d987e088e83bbb235152db0500fdc6dc
  • Pointer size: 131 Bytes
  • Size of remote file: 182 kB
examples/5a6a25963db2f667441d5076972c207c.png CHANGED

Git LFS Details

  • SHA256: a4e0773d094b45a7c496292e5352166d6f47e469c2c6101ffa9536e44007a4e3
  • Pointer size: 131 Bytes
  • Size of remote file: 523 kB
examples/8da7ceb94669c2f65cbd28022e1f9876.png CHANGED

Git LFS Details

  • SHA256: 7be8a036e6f3d11db05f0c6a93de165dae4c2afc052d09f6660c43a0a0484e99
  • Pointer size: 131 Bytes
  • Size of remote file: 286 kB
examples/923d65f767c85a42212cae13fba3750b.png CHANGED

Git LFS Details

  • SHA256: 86f4eff6d64d036a91d193e2373a76fd6698b8a3cd8be01e65b96a742907838d
  • Pointer size: 131 Bytes
  • Size of remote file: 773 kB
examples/959c4c726a69901ce71b93a9242ed900.png ADDED
examples/c9856a2bc31846d684cbb965457fad59.png CHANGED

Git LFS Details

  • SHA256: b97743cb85d8b2db10f86b5216a67f0df0ff84b71665d2be451dcd517c557fb6
  • Pointer size: 131 Bytes
  • Size of remote file: 157 kB
examples/e1e7622af7074a022f5d96dc16672517.png CHANGED

Git LFS Details

  • SHA256: badb5a8c2d9591aa4c71915795cb3d229678cad3612f2ee36d399174de32004e
  • Pointer size: 131 Bytes
  • Size of remote file: 652 kB
examples/fb9d20fdb93750584390599478ecf86e.png CHANGED

Git LFS Details

  • SHA256: ae80334944bb3c9496565dbe28e0ec30d2150344b600b6aac5c917c8c6ef4f1f
  • Pointer size: 131 Bytes
  • Size of remote file: 623 kB
examples/segmentation/003883.jpg ADDED
examples/segmentation/003883.json ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "item2": {
3
+ "segmentation": [
4
+ [
5
+ 232.29572649572654, 34.447388414055126, 237.0364672364673,
6
+ 40.57084520417861, 244.9377018043686, 47.089363722697165,
7
+ 252.04881291547974, 49.65726495726508, 262.5179487179489,
8
+ 51.43504273504287, 269.233998100665, 50.447388414055204,
9
+ 277.5446343779678, 49.12725546058881, 285.64339981006657,
10
+ 46.16429249762584, 294.9273504273506, 41.22602089268754,
11
+ 299.9377967711301, 36.514245014245084, 304.67853751187084,
12
+ 30.588319088319132, 306.0612535612536, 25.65004748338083,
13
+ 307.64150047483383, 23.477207977207982, 311.19705603038943,
14
+ 24.859924026590704, 317.12298195631536, 28.020417853751216,
15
+ 323.04890788224134, 29.008072174738874, 331.34520417853764,
16
+ 30.193257359924065, 339.4439696106365, 34.7364672364673,
17
+ 346.75261158594515, 39.279677113010536, 350.11063627730323,
18
+ 44.61301044634389, 355.00541310541314, 61.422317188983875,
19
+ 358.9560303893638, 77.6198480531815, 362.1165242165243,
20
+ 90.26182336182353, 364.88195631528976, 103.29886039886063,
21
+ 367.6473884140552, 118.11367521367552, 369.42516619183294,
22
+ 129.37293447293484, 369.2324786324788, 132.60550807217476,
23
+ 365.6769230769232, 134.77834757834762, 359.15840455840464,
24
+ 138.3339031339032, 353.43000949667623, 140.70427350427357,
25
+ 351.4547008547009, 141.4943969610637, 351.25716999050337,
26
+ 138.5314339981007, 351.05963912630585, 136.75365622032294,
27
+ 345.7263057929725, 137.34624881291552, 337.8250712250712,
28
+ 139.51908831908838, 331.5040835707502, 141.09933523266864,
29
+ 324.7880341880341, 143.66723646723653, 322.2201329534662,
30
+ 146.43266856600198, 322.2201329534662, 151.5684710351378,
31
+ 323.0102564102563, 160.6548907882243, 324.95185185185176,
32
+ 173.44615384615395, 325.34691358024685, 190.23627730294416,
33
+ 325.93950617283946, 205.64368471035164, 325.93950617283946,
34
+ 215.71775878442577, 325.93950617283946, 220.06343779677147,
35
+ 322.7790123456789, 223.22393162393197, 315.0753086419752,
36
+ 228.55726495726532, 309.34691358024673, 230.53257359924066,
37
+ 290.1866096866098, 230.87929724596398, 263.91500474833805,
38
+ 229.6941120607788, 236.45821462488112, 229.29905033238373,
39
+ 218.48290598290572, 226.73114909781583, 202.65650522317188,
40
+ 224.82811016144353, 197.71823361823357, 221.07502374169044,
41
+ 195.15033238366567, 214.55650522317188, 195.74292497625825,
42
+ 200.53181386514711, 197.125641025641, 180.5811965811964,
43
+ 197.33285849952523, 164.68736942070285, 198.51804368471042,
44
+ 154.21823361823365, 198.51804368471042, 138.61329534662863,
45
+ 193.5797720797721, 136.4404558404558, 185.08594491927823,
46
+ 133.08243114909774, 177.77730294396957, 128.73675213675205,
47
+ 174.41927825261152, 128.53922127255453, 173.82668566001894,
48
+ 133.2799620132953, 174.02421652421646, 136.24292497625825,
49
+ 172.83903133903127, 137.03304843304838, 167.11063627730283,
50
+ 134.86020892687554, 159.9995251661917, 130.51452991452985,
51
+ 159.01187084520404, 129.1318138651471, 159.60446343779662,
52
+ 123.60094966761622, 162.6012345679013, 111.57578347578357,
53
+ 165.95925925925934, 98.53874643874646, 170.30493827160504,
54
+ 82.7362773029439, 173.92307692307693, 70.05584045584048,
55
+ 177.08357075023744, 54.84596391263053, 180.58129154795822,
56
+ 41.73190883190885, 183.14919278252614, 34.423266856600165,
57
+ 188.51623931623936, 30.279962013295354, 195.6273504273505,
58
+ 25.539221272554588, 201.75080721747398, 22.971320037986676,
59
+ 211.23228869895553, 22.37872744539408, 221.10883190883212,
60
+ 20.996011396011355, 224.8619183285852, 20.996011396011355,
61
+ 226.04710351377042, 23.56391263057927, 229.01006647673339,
62
+ 30.279962013295354
63
+ ]
64
+ ],
65
+ "category_id": 1,
66
+ "category_name": "short sleeve top"
67
+ },
68
+ "item1": {
69
+ "segmentation": [
70
+ [
71
+ 201.51804815682925, 224.7401022799914, 218.41555508203712,
72
+ 227.23317707223518, 236.42109524824218, 228.89522693373104,
73
+ 256.91971020669104, 229.44924355422967, 280.188408267633,
74
+ 230.2802684849776, 296.53189857234224, 230.2802684849776,
75
+ 313.7064138077994, 229.72625186447897, 315.32667803111013,
76
+ 236.8076070743661, 317.8197528233539, 240.96273172810572,
77
+ 318.65077775410185, 246.2258896228426, 321.4208608565949,
78
+ 253.15109737907534, 322.8059024078415, 265.0624547197956,
79
+ 324.74496057958663, 273.6497123375242, 325.9612827615598,
80
+ 284.4076070743661, 325.40726614106114, 299.9200724483274,
81
+ 324.29923290006394, 316.8175793735353, 322.0831664180694,
82
+ 325.9588536117625, 320.16803750266354, 336.5366716386107,
83
+ 316.0129128489239, 344.01589601534204, 315.18188791817596,
84
+ 357.86631152780745, 312.4118048156829, 368.1156190070319,
85
+ 308.5336884721926, 378.64193479650567, 306.31762199019806,
86
+ 385.29013424248905, 305.76360536969946, 398.3095248242066,
87
+ 305.48659705945016, 409.6668655444283, 304.94393777967184,
88
+ 419.3418708715109, 302.7278712976774, 427.0981035584915,
89
+ 301.3428297464308, 433.74630300447495, 301.3428297464308,
90
+ 445.3806520349459, 300.5118048156829, 461.72414233965515,
91
+ 299.89735776688684, 467.352311953974, 297.9582995951417,
92
+ 477.60161943319844, 295.1882164926486, 491.7290432559132,
93
+ 293.52616663115276, 497.2692094608994, 291.8641167696569,
94
+ 503.36339228638417, 291.3101001491583, 510.8426166631155,
95
+ 289.37104197741314, 513.8897080758579, 287.4433411463882,
96
+ 519.2043682079693, 283.0112081823993, 519.7583848284679,
97
+ 275.5319838056679, 519.4813765182186, 270.26882591093107,
98
+ 518.096334966972, 265.8366929469421, 513.6642020029831,
99
+ 263.62062646494763, 509.78608565949276, 264.7286597059449,
100
+ 498.9827615597697, 265.2826763264435, 478.76115491157015,
101
+ 266.1137012571914, 467.1268058810992, 266.1137012571914,
102
+ 454.6614319198803, 264.17464308544623, 441.64204133816276,
103
+ 263.06660984444903, 424.19051779245626, 261.5834221180482,
104
+ 407.2581504368212, 259.92137225655233, 396.45482633709815,
105
+ 257.1512891540592, 380.1113360323889, 257.42829746430857,
106
+ 359.05870445344146, 256.8742808438099, 338.56008949499255,
107
+ 256.8742808438099, 321.3855742595354, 254.10419774131685,
108
+ 320.5545493287875, 251.05710632857443, 326.6487321542723,
109
+ 249.39505646707858, 339.1141061154912, 249.11804815682927,
110
+ 356.28862135094835, 248.28702322608135, 372.3551033454083,
111
+ 245.23993181333896, 387.59056040912026, 243.5766673769444,
112
+ 409.1404219049649, 241.91461751544855, 424.92989558917554,
113
+ 240.52957596420202, 440.4423609631369, 238.86752610270617,
114
+ 455.40080971659955, 238.86752610270617, 470.91327509056083,
115
+ 238.31350948220754, 486.42574046452216, 238.81966759002768,
116
+ 501.19639889196685, 239.6506925207756, 511.168698060942,
117
+ 236.0495844875346, 515.6008310249309, 229.40138504155118,
118
+ 519.4789473684212, 221.6451523545705, 520.3099722991692,
119
+ 216.65900277008296, 517.2628808864267, 213.33490304709125,
120
+ 509.50664819944615, 208.3487534626037, 491.50110803324105,
121
+ 205.8556786703599, 475.1576177285318, 203.63961218836545,
122
+ 460.75318559556774, 203.63961218836545, 443.3016620498613,
123
+ 203.63961218836545, 421.9720221606645, 200.59252077562303,
124
+ 415.60083102493036, 197.5052844662264, 406.9847858512679,
125
+ 195.28921798423193, 392.0263370978052, 193.35015981248677,
126
+ 370.97370551885774, 190.857085020243, 343.82689111442545,
127
+ 187.8099936075006, 322.77425953547794, 187.0028979330919,
128
+ 309.89237161730256, 186.17187300234397, 291.33281483059886,
129
+ 188.11093117408916, 266.67907521841033, 191.15802258683155,
130
+ 250.3355849137011, 196.69818879181773, 234.82311953973982
131
+ ]
132
+ ],
133
+ "category_id": 8,
134
+ "category_name": "trousers"
135
+ }
136
+ }
examples/segmentation/028009.jpg ADDED
examples/segmentation/028009.json ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "item2": {
3
+ "segmentation": [
4
+ [
5
+ 314.7474747474744, 204.84848484848482, 328.9696969696967,
6
+ 209.7373737373737, 342.74747474747454, 211.95959595959593,
7
+ 360.0808080808079, 211.07070707070704, 375.19191919191906,
8
+ 210.18181818181816, 384.5252525252524, 207.07070707070704,
9
+ 390.30303030303025, 204.84848484848482, 396.080808080808,
10
+ 201.29292929292924, 402.3030303030303, 204.40404040404036,
11
+ 412.969696969697, 203.9595959595959, 425.8585858585859,
12
+ 206.18181818181813, 434.3030303030304, 211.95959595959593,
13
+ 439.63636363636374, 223.0707070707071, 444.0808080808082,
14
+ 234.18181818181824, 448.52525252525265, 250.62626262626276,
15
+ 449.41414141414157, 260.848484848485, 452.08080808080825,
16
+ 279.0707070707073, 456.08080808080825, 300.84848484848516,
17
+ 457.858585858586, 308.40404040404076, 460.5252525252526,
18
+ 315.7575757575756, 460.96969696969705, 329.97979797979787,
19
+ 460.5252525252526, 345.9797979797979, 456.969696969697,
20
+ 363.75757575757575, 453.41414141414145, 373.5353535353536,
21
+ 450.3030303030303, 385.97979797979804, 447.1919191919192,
22
+ 393.9797979797981, 443.6363636363636, 401.9797979797981,
23
+ 438.3030303030303, 403.7575757575759, 433.85858585858585,
24
+ 401.09090909090924, 430.7474747474747, 393.0909090909092,
25
+ 426.7474747474747, 383.3131313131314, 424.9696969696969,
26
+ 374.8686868686869, 424.9696969696969, 369.0909090909091,
27
+ 423.63636363636357, 363.3131313131313, 423.63636363636357,
28
+ 359.3131313131313, 423.63636363636357, 352.6464646464646,
29
+ 420.9696969696969, 350.86868686868684, 422.74747474747466,
30
+ 345.53535353535347, 422.74747474747466, 340.64646464646455,
31
+ 422.74747474747466, 332.2020202020201, 421.8585858585858,
32
+ 321.53535353535335, 418.74747474747466, 313.0909090909089,
33
+ 416.5252525252524, 306.4242424242422, 412.9696969696969,
34
+ 314.8686868686867, 410.3030303030302, 320.20202020202004,
35
+ 411.6363636363635, 327.3131313131312, 414.74747474747466,
36
+ 336.2020202020201, 418.74747474747466, 351.7575757575757,
37
+ 420.9696969696969, 365.0909090909091, 423.1919191919191,
38
+ 377.0909090909091, 423.1919191919191, 385.0909090909092,
39
+ 424.5252525252525, 398.42424242424255, 396.0808080808079,
40
+ 398.42424242424255, 374.7474747474745, 400.6464646464648,
41
+ 354.7474747474744, 400.6464646464648, 331.6363636363632,
42
+ 400.6464646464648, 313.41414141414094, 400.6464646464648,
43
+ 305.4141414141409, 399.3131313131314, 297.4141414141409,
44
+ 396.6464646464648, 284.525252525252, 396.2020202020203,
45
+ 282.8686868686866, 391.59595959595964, 282.42424242424215,
46
+ 373.81818181818176, 282.42424242424215, 358.26262626262616,
47
+ 281.09090909090884, 334.70707070707056, 281.5353535353533,
48
+ 313.37373737373713, 283.31313131313107, 297.3737373737371,
49
+ 282.8686868686866, 283.1515151515148, 280.6464646464644,
50
+ 266.7070707070703, 271.313131313131, 253.3737373737369,
51
+ 264.6464646464643, 246.70707070707022, 257.5353535353532,
52
+ 239.59595959595907, 249.9797979797976, 228.9292929292924,
53
+ 242.42424242424204, 220.92929292929236, 233.17171717171723,
54
+ 209.01010101010093, 225.1717171717172, 194.78787878787867,
55
+ 222.06060606060606, 185.4545454545453, 224.2828282828283,
56
+ 179.6767676767675, 230.0606060606061, 171.67676767676747,
57
+ 232.72727272727278, 169.89898989898967, 243.83838383838392,
58
+ 167.67676767676744, 256.2828282828284, 165.4545454545452,
59
+ 274.06060606060623, 165.4545454545452, 291.8383838383841,
60
+ 167.67676767676744, 302.5050505050508, 168.1212121212119,
61
+ 310.94949494949526, 177.0101010101008, 314.0606060606064,
62
+ 181.45454545454527, 314.94949494949526, 187.2323232323231,
63
+ 312.7272727272731, 193.01010101010087, 307.8383838383842,
64
+ 191.2323232323231, 302.94949494949526, 193.45454545454533,
65
+ 292.727272727273, 193.45454545454533, 290.50505050505075,
66
+ 195.67676767676755, 287.39393939393966, 197.45454545454533,
67
+ 285.61616161616183, 197.45454545454533, 283.3939393939396,
68
+ 193.89898989898978, 278.94949494949515, 197.45454545454533,
69
+ 274.94949494949515, 199.67676767676755, 279.83838383838406,
70
+ 201.45454545454535, 286.50505050505075, 201.45454545454535,
71
+ 291.8383838383841, 201.8989898989898, 296.2828282828286,
72
+ 202.7878787878787, 303.3939393939397, 202.34343434343424
73
+ ]
74
+ ],
75
+ "category_id": 2,
76
+ "category_name": "long sleeve top"
77
+ },
78
+ "item1": {
79
+ "segmentation": [
80
+ [
81
+ 346.9494949494949, 660.6868686868687, 397.6161616161618,
82
+ 661.5757575757576, 398.06060606060623, 674.0202020202021,
83
+ 398.94949494949515, 691.3535353535356, 397.6161616161618,
84
+ 710.0202020202022, 395.838383838384, 726.0202020202023,
85
+ 393.1717171717173, 742.0202020202023, 346.9494949494949,
86
+ 738.9090909090912, 346.50505050505046, 724.2424242424245,
87
+ 347.3939393939394, 713.5757575757578, 348.72727272727275,
88
+ 706.0202020202022, 349.17171717171715, 686.0202020202022,
89
+ 348.72727272727275, 675.7979797979799, 347.3939393939394,
90
+ 667.7979797979799
91
+ ],
92
+ [
93
+ 283.71717171717165, 396.68686868686876, 289.9393939393939,
94
+ 396.68686868686876, 303.27272727272725, 397.1313131313132,
95
+ 312.16161616161617, 399.7979797979799, 334.3838383838385,
96
+ 400.68686868686876, 351.7171717171719, 400.68686868686876,
97
+ 361.93939393939417, 401.5757575757577, 376.60606060606085,
98
+ 401.5757575757577, 390.82828282828314, 398.46464646464653,
99
+ 410.3838383838388, 397.5757575757577, 425.0505050505055,
100
+ 394.46464646464653, 431.71717171717216, 422.9090909090911,
101
+ 434.38383838383885, 447.79797979798, 430.38383838383885,
102
+ 478.0202020202024, 423.2727272727277, 507.79797979798025,
103
+ 418.3838383838388, 530.0202020202025, 411.8787878787878,
104
+ 557.3333333333333, 403.43434343434336, 590.6666666666666,
105
+ 400.7676767676767, 611.5555555555557, 399.8787878787878,
106
+ 619.1111111111112, 399.8787878787878, 630.6666666666669,
107
+ 398.10101010101, 635.1111111111113, 399.43434343434336,
108
+ 641.7777777777779, 399.43434343434336, 656.4444444444447,
109
+ 398.10101010101, 662.666666666667, 347.4343434343432, 662.666666666667,
110
+ 346.1010101010098, 637.7777777777779, 347.4343434343432,
111
+ 610.6666666666667, 349.21212121212096, 576.4444444444445,
112
+ 350.98989898989873, 556.4444444444443, 349.6565656565654,
113
+ 541.3333333333331, 348.32323232323205, 535.9999999999998,
114
+ 348.32323232323205, 523.5555555555553, 349.21212121212096,
115
+ 505.33333333333303, 342.5454545454543, 511.5555555555553,
116
+ 338.9898989898987, 516.8888888888887, 334.5454545454542,
117
+ 523.5555555555553, 325.6565656565653, 543.111111111111,
118
+ 319.87878787878753, 556.4444444444443, 314.1010101010097,
119
+ 568.4444444444443, 307.8787878787875, 583.1111111111111,
120
+ 300.3232323232319, 608.0000000000001, 298.10101010100965,
121
+ 617.7777777777778, 298.5454545454541, 624.0000000000001,
122
+ 295.43434343434296, 628.0000000000001, 293.2121212121208,
123
+ 628.0000000000001, 293.6565656565652, 632.4444444444446,
124
+ 291.43434343434296, 638.6666666666669, 290.54545454545405,
125
+ 644.4444444444447, 292.3232323232319, 648.8888888888891,
126
+ 303.8787878787875, 667.1111111111114, 313.65656565656525,
127
+ 684.0000000000003, 319.87878787878753, 700.8888888888893,
128
+ 322.54545454545416, 712.8888888888894, 324.323232323232,
129
+ 720.0000000000005, 327.87878787878753, 731.5555555555561,
130
+ 330.9898989898987, 738.6666666666672, 331.87878787878753,
131
+ 743.1111111111117, 334.5454545454542, 745.7777777777783,
132
+ 336.3232323232325, 749.1313131313133, 338.54545454545473,
133
+ 754.0202020202022, 338.54545454545473, 757.5757575757577,
134
+ 341.6565656565658, 760.6868686868688, 344.76767676767696,
135
+ 767.3535353535356, 345.2121212121214, 770.9090909090911,
136
+ 346.9898989898992, 754.0202020202022, 347.43434343434365,
137
+ 738.909090909091, 393.2121212121216, 740.6868686868687,
138
+ 389.65656565656604, 764.6868686868688, 386.5454545454549,
139
+ 784.2424242424245, 384.3232323232327, 806.9090909090912,
140
+ 382.54545454545485, 812.686868686869, 381.13131313131316,
141
+ 818.7070707070708, 378.020202020202, 828.4848484848485,
142
+ 375.35353535353534, 839.5959595959597, 374.9090909090909,
143
+ 854.2626262626264, 373.1313131313131, 856.9292929292931,
144
+ 376.24242424242425, 864.9292929292931, 372.24242424242425,
145
+ 874.2626262626264, 366.4646464646464, 880.9292929292932,
146
+ 357.13131313131305, 872.9292929292932, 345.13131313131305,
147
+ 868.0404040404043, 337.131313131313, 867.1515151515154,
148
+ 337.131313131313, 856.0404040404042, 338.4646464646463,
149
+ 850.7070707070709, 336.2424242424241, 846.2626262626264,
150
+ 335.3535353535352, 841.3737373737375, 338.4646464646463,
151
+ 827.5959595959597, 342.0202020202019, 815.5959595959596,
152
+ 344.6868686868686, 809.3737373737374, 344.6868686868686,
153
+ 796.4848484848484, 344.6868686868686, 786.7070707070707,
154
+ 346.0202020202019, 779.151515151515, 344.24242424242414,
155
+ 776.0404040404039, 343.3535353535352, 786.2626262626262,
156
+ 342.0202020202019, 796.0404040404039, 338.90909090909076,
157
+ 801.8181818181818, 333.57575757575745, 809.3737373737374,
158
+ 326.02020202020185, 813.8181818181819, 320.242424242424,
159
+ 812.4848484848485, 318.02020202020185, 810.7070707070707,
160
+ 317.13131313131294, 807.1515151515151, 315.79797979797956,
161
+ 803.5959595959596, 313.57575757575734, 799.5959595959596,
162
+ 311.3535353535351, 793.8181818181818, 306.90909090909065,
163
+ 791.1515151515151, 305.57575757575734, 787.5959595959595,
164
+ 304.242424242424, 782.7070707070706, 302.02020202020174,
165
+ 776.4848484848484, 298.90909090909065, 773.8181818181816,
166
+ 294.90909090909065, 771.151515151515, 290.34343434343435,
167
+ 758.909090909091, 284.5656565656566, 742.020202020202,
168
+ 278.78787878787875, 729.5757575757575, 270.3434343434343,
169
+ 713.131313131313, 257.8989898989898, 689.1313131313129,
170
+ 247.2323232323231, 669.1313131313128, 239.23232323232307,
171
+ 657.5757575757573, 233.89898989898973, 642.9090909090905,
172
+ 233.0101010101008, 634.0202020202016, 233.45454545454527,
173
+ 630.0202020202016, 235.23232323232304, 611.7979797979793,
174
+ 241.93939393939402, 583.0707070707073, 245.93939393939405,
175
+ 567.5151515151516, 251.2727272727274, 540.4040404040404,
176
+ 256.1616161616163, 518.6262626262626, 260.60606060606074,
177
+ 501.2929292929292, 263.7171717171719, 493.7373737373736,
178
+ 268.16161616161634, 481.73737373737356, 270.38383838383857,
179
+ 469.73737373737356, 272.6060606060608, 462.18181818181796,
180
+ 276.1616161616164, 457.7373737373735, 276.1616161616164,
181
+ 454.1818181818179, 277.05050505050525, 450.1818181818179,
182
+ 278.828282828283, 433.292929292929, 278.3838383838386,
183
+ 419.0707070707067, 278.828282828283, 417.29292929292893,
184
+ 281.0505050505053, 414.1818181818178, 281.93939393939417,
185
+ 404.8484848484844, 283.71717171717194, 401.2929292929289
186
+ ]
187
+ ],
188
+ "category_id": 8,
189
+ "category_name": "trousers"
190
+ }
191
+ }
examples/slack_trial2-000150.png ADDED
fetch_data.sh ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ urle () { [[ "${1}" ]] || return 1; local LANG=C i x; for (( i = 0; i < ${#1}; i++ )); do x="${1:i:1}"; [[ "${x}" == [a-zA-Z0-9.~-] ]] && echo -n "${x}" || printf '%%%02X' "'${x}"; done; echo; }
3
+
4
+ mkdir -p data/smpl_related/models
5
+
6
+ # username and password input
7
+ echo -e "\nYou need to register at https://icon.is.tue.mpg.de/, according to Installation Instruction."
8
+ read -p "Username (ICON):" username
9
+ read -p "Password (ICON):" password
10
+ username=$(urle $username)
11
+ password=$(urle $password)
12
+
13
+ # SMPL (Male, Female)
14
+ echo -e "\nDownloading SMPL..."
15
+ wget --post-data "username=$username&password=$password" 'https://download.is.tue.mpg.de/download.php?domain=smpl&sfile=SMPL_python_v.1.0.0.zip&resume=1' -O './data/smpl_related/models/SMPL_python_v.1.0.0.zip' --no-check-certificate --continue
16
+ unzip data/smpl_related/models/SMPL_python_v.1.0.0.zip -d data/smpl_related/models
17
+ mv data/smpl_related/models/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl data/smpl_related/models/smpl/SMPL_FEMALE.pkl
18
+ mv data/smpl_related/models/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl data/smpl_related/models/smpl/SMPL_MALE.pkl
19
+ cd data/smpl_related/models
20
+ rm -rf *.zip __MACOSX smpl/models smpl/smpl_webuser
21
+ cd ../../..
22
+
23
+ # SMPL (Neutral, from SMPLIFY)
24
+ echo -e "\nDownloading SMPLify..."
25
+ wget --post-data "username=$username&password=$password" 'https://download.is.tue.mpg.de/download.php?domain=smplify&sfile=mpips_smplify_public_v2.zip&resume=1' -O './data/smpl_related/models/mpips_smplify_public_v2.zip' --no-check-certificate --continue
26
+ unzip data/smpl_related/models/mpips_smplify_public_v2.zip -d data/smpl_related/models
27
+ mv data/smpl_related/models/smplify_public/code/models/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl data/smpl_related/models/smpl/SMPL_NEUTRAL.pkl
28
+ cd data/smpl_related/models
29
+ rm -rf *.zip smplify_public
30
+ cd ../../..
31
+
32
+ # ICON
33
+ echo -e "\nDownloading ICON..."
34
+ wget --post-data "username=$username&password=$password" 'https://download.is.tue.mpg.de/download.php?domain=icon&sfile=icon_data.zip&resume=1' -O './data/icon_data.zip' --no-check-certificate --continue
35
+ cd data && unzip icon_data.zip
36
+ mv smpl_data smpl_related/
37
+ rm -f icon_data.zip
38
+ cd ..
39
+
40
+ function download_for_training () {
41
+
42
+ # SMPL-X (optional)
43
+ echo -e "\nDownloading SMPL-X..."
44
+ wget --post-data "username=$1&password=$2" 'https://download.is.tue.mpg.de/download.php?domain=smplx&sfile=models_smplx_v1_1.zip&resume=1' -O './data/smpl_related/models/models_smplx_v1_1.zip' --no-check-certificate --continue
45
+ unzip data/smpl_related/models/models_smplx_v1_1.zip -d data/smpl_related
46
+ rm -f data/smpl_related/models/models_smplx_v1_1.zip
47
+
48
+ # SMIL (optional)
49
+ echo -e "\nDownloading SMIL..."
50
+ wget --post-data "username=$1&password=$2" 'https://download.is.tue.mpg.de/download.php?domain=agora&sfile=smpl_kid_template.npy&resume=1' -O './data/smpl_related/models/smpl/smpl_kid_template.npy' --no-check-certificate --continue
51
+ wget --post-data "username=$1&password=$2" 'https://download.is.tue.mpg.de/download.php?domain=agora&sfile=smplx_kid_template.npy&resume=1' -O './data/smpl_related/models/smplx/smplx_kid_template.npy' --no-check-certificate --continue
52
+ }
53
+
54
+
55
+ read -p "(optional) Download models used for training (y/n)?" choice
56
+ case "$choice" in
57
+ y|Y ) download_for_training $username $password;;
58
+ n|N ) echo "Great job! Try the demo for now!";;
59
+ * ) echo "Invalid input! Please use y|Y or n|N";;
60
+ esac
install.sh ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # conda installation
2
+ # wget https://repo.anaconda.com/miniconda/Miniconda3-py38_4.10.3-Linux-x86_64.sh
3
+ # chmod +x Miniconda3-py38_4.10.3-Linux-x86_64.sh
4
+ # bash Miniconda3-py38_4.10.3-Linux-x86_64.sh -b -f -p /home/user/.local
5
+ # rm Miniconda3-py38_4.10.3-Linux-x86_64.sh
6
+ # conda config --env --set always_yes true
7
+ # conda update -n base -c defaults conda -y
8
+
9
+ # # conda environment setup
10
+ # conda env create -f environment.yaml
11
+ # conda init bash
12
+ # source /home/user/.bashrc
13
+ # source activate icon
14
+ nvidia-smi
15
+ pip install torch==1.8.2 torchvision==0.9.2 --extra-index-url https://download.pytorch.org/whl/lts/1.8/cu111
16
+ pip install -r requirement.txt
lib/common/render.py CHANGED
@@ -33,15 +33,14 @@ from pytorch3d.renderer import (
33
  )
34
  from pytorch3d.renderer.mesh import TexturesVertex
35
  from pytorch3d.structures import Meshes
36
-
37
- import os, subprocess
38
-
39
  from lib.dataset.mesh_util import SMPLX, get_visibility
 
40
  import lib.common.render_utils as util
41
  import torch
42
  import numpy as np
43
  from PIL import Image
44
  from tqdm import tqdm
 
45
  import cv2
46
  import math
47
  from termcolor import colored
@@ -327,10 +326,8 @@ class Render:
327
 
328
  def get_rendered_video(self, images, save_path):
329
 
330
- tmp_path = save_path.replace('cloth', 'tmp')
331
-
332
  self.cam_pos = []
333
- for angle in range(0, 360, 3):
334
  self.cam_pos.append(
335
  (
336
  100.0 * math.cos(np.pi / 180 * angle),
@@ -345,7 +342,7 @@ class Render:
345
 
346
  fourcc = cv2.VideoWriter_fourcc(*"mp4v")
347
  video = cv2.VideoWriter(
348
- tmp_path, fourcc, 30, (self.size * len(self.meshes) +
349
  new_shape[1] * len(images), self.size)
350
  )
351
 
@@ -375,8 +372,6 @@ class Render:
375
  video.write(final_img)
376
 
377
  video.release()
378
-
379
- os.system(f'ffmpeg -y -loglevel quiet -stats -i {tmp_path} -c:v libx264 {save_path}')
380
 
381
  def get_silhouette_image(self, cam_ids=[0, 2]):
382
 
 
33
  )
34
  from pytorch3d.renderer.mesh import TexturesVertex
35
  from pytorch3d.structures import Meshes
 
 
 
36
  from lib.dataset.mesh_util import SMPLX, get_visibility
37
+
38
  import lib.common.render_utils as util
39
  import torch
40
  import numpy as np
41
  from PIL import Image
42
  from tqdm import tqdm
43
+ import os
44
  import cv2
45
  import math
46
  from termcolor import colored
 
326
 
327
  def get_rendered_video(self, images, save_path):
328
 
 
 
329
  self.cam_pos = []
330
+ for angle in range(360):
331
  self.cam_pos.append(
332
  (
333
  100.0 * math.cos(np.pi / 180 * angle),
 
342
 
343
  fourcc = cv2.VideoWriter_fourcc(*"mp4v")
344
  video = cv2.VideoWriter(
345
+ save_path, fourcc, 30, (self.size * len(self.meshes) +
346
  new_shape[1] * len(images), self.size)
347
  )
348
 
 
372
  video.write(final_img)
373
 
374
  video.release()
 
 
375
 
376
  def get_silhouette_image(self, cam_ids=[0, 2]):
377
 
lib/common/train_util.py CHANGED
@@ -32,8 +32,6 @@ import os
32
  from termcolor import colored
33
 
34
 
35
-
36
-
37
  def reshape_sample_tensor(sample_tensor, num_views):
38
  if num_views == 1:
39
  return sample_tensor
 
32
  from termcolor import colored
33
 
34
 
 
 
35
  def reshape_sample_tensor(sample_tensor, num_views):
36
  if num_views == 1:
37
  return sample_tensor
lib/dataloader_demo.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from lib.common.config import get_cfg_defaults
3
+ from lib.dataset.PIFuDataset import PIFuDataset
4
+
5
+ if __name__ == '__main__':
6
+
7
+ parser = argparse.ArgumentParser()
8
+ parser.add_argument('-v',
9
+ '--show',
10
+ action='store_true',
11
+ help='vis sampler 3D')
12
+ parser.add_argument('-s',
13
+ '--speed',
14
+ action='store_true',
15
+ help='vis sampler 3D')
16
+ parser.add_argument('-l',
17
+ '--list',
18
+ action='store_true',
19
+ help='vis sampler 3D')
20
+ parser.add_argument('-c',
21
+ '--config',
22
+ default='./configs/train/icon-filter.yaml',
23
+ help='vis sampler 3D')
24
+ args_c = parser.parse_args()
25
+
26
+ args = get_cfg_defaults()
27
+ args.merge_from_file(args_c.config)
28
+
29
+ dataset = PIFuDataset(args, split='train', vis=args_c.show)
30
+ print(f"Number of subjects :{len(dataset.subject_list)}")
31
+ data_dict = dataset[0]
32
+
33
+ if args_c.list:
34
+ for k in data_dict.keys():
35
+ if not hasattr(data_dict[k], "shape"):
36
+ print(f"{k}: {data_dict[k]}")
37
+ else:
38
+ print(f"{k}: {data_dict[k].shape}")
39
+
40
+ if args_c.show:
41
+ # for item in dataset:
42
+ item = dataset[0]
43
+ dataset.visualize_sampling3D(item, mode='occ')
44
+
45
+ if args_c.speed:
46
+ # original: 2 it/s
47
+ # smpl online compute: 2 it/s
48
+ # normal online compute: 1.5 it/s
49
+ from tqdm import tqdm
50
+ for item in tqdm(dataset):
51
+ # pass
52
+ for k in item.keys():
53
+ if 'voxel' in k:
54
+ if not hasattr(item[k], "shape"):
55
+ print(f"{k}: {item[k]}")
56
+ else:
57
+ print(f"{k}: {item[k].shape}")
58
+ print("--------------------")
lib/dataset/Evaluator.py CHANGED
@@ -15,11 +15,11 @@
15
  #
16
  # Contact: ps-license@tuebingen.mpg.de
17
 
18
-
19
  from lib.renderer.gl.normal_render import NormalRender
20
  from lib.dataset.mesh_util import projection
21
  from lib.common.render import Render
22
  from PIL import Image
 
23
  import numpy as np
24
  import torch
25
  from torch import nn
 
15
  #
16
  # Contact: ps-license@tuebingen.mpg.de
17
 
 
18
  from lib.renderer.gl.normal_render import NormalRender
19
  from lib.dataset.mesh_util import projection
20
  from lib.common.render import Render
21
  from PIL import Image
22
+ import os
23
  import numpy as np
24
  import torch
25
  from torch import nn
lib/dataset/PIFuDataset.py CHANGED
@@ -9,12 +9,12 @@ import os.path as osp
9
  import numpy as np
10
  from PIL import Image
11
  import random
12
- import os
13
  import trimesh
14
  import torch
 
15
  from kaolin.ops.mesh import check_sign
16
  import torchvision.transforms as transforms
17
- from huggingface_hub import hf_hub_download, cached_download
18
 
19
 
20
  class PIFuDataset():
@@ -343,9 +343,9 @@ class PIFuDataset():
343
  torch.as_tensor(smpl_param['full_pose'][0])).numpy()
344
  smpl_betas = smpl_param["betas"]
345
 
346
- smpl_path = cached_download(osp.join(self.smplx.model_dir, "smpl/SMPL_MALE.pkl"), use_auth_token=os.environ['ICON'])
347
- tetra_path = cached_download(osp.join(self.smplx.tedra_dir,
348
- "tetra_male_adult_smpl.npz"), use_auth_token=os.environ['ICON'])
349
 
350
  smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult')
351
 
@@ -365,7 +365,7 @@ class PIFuDataset():
365
  verts = (np.concatenate([smpl_model.verts, smpl_model.verts_added],
366
  axis=0) * smplx_param["scale"] + smplx_param["translation"]
367
  ) * self.datasets_dict[data_dict['dataset']]['scale']
368
- faces = np.loadtxt(cached_download(osp.join(self.smplx.tedra_dir, "tetrahedrons_male_adult.txt"), use_auth_token=os.environ['ICON']),
369
  dtype=np.int32) - 1
370
 
371
  pad_v_num = int(8000 - verts.shape[0])
@@ -586,4 +586,77 @@ class PIFuDataset():
586
  labels = torch.from_numpy(labels).float()
587
  normals = torch.from_numpy(normals).float()
588
 
589
- return {'samples_geo': samples, 'labels_geo': labels}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  import numpy as np
10
  from PIL import Image
11
  import random
 
12
  import trimesh
13
  import torch
14
+ import vedo
15
  from kaolin.ops.mesh import check_sign
16
  import torchvision.transforms as transforms
17
+ from ipdb import set_trace
18
 
19
 
20
  class PIFuDataset():
 
343
  torch.as_tensor(smpl_param['full_pose'][0])).numpy()
344
  smpl_betas = smpl_param["betas"]
345
 
346
+ smpl_path = osp.join(self.smplx.model_dir, "smpl/SMPL_MALE.pkl")
347
+ tetra_path = osp.join(self.smplx.tedra_dir,
348
+ "tetra_male_adult_smpl.npz")
349
 
350
  smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult')
351
 
 
365
  verts = (np.concatenate([smpl_model.verts, smpl_model.verts_added],
366
  axis=0) * smplx_param["scale"] + smplx_param["translation"]
367
  ) * self.datasets_dict[data_dict['dataset']]['scale']
368
+ faces = np.loadtxt(osp.join(self.smplx.tedra_dir, "tetrahedrons_male_adult.txt"),
369
  dtype=np.int32) - 1
370
 
371
  pad_v_num = int(8000 - verts.shape[0])
 
586
  labels = torch.from_numpy(labels).float()
587
  normals = torch.from_numpy(normals).float()
588
 
589
+ return {'samples_geo': samples, 'labels_geo': labels}
590
+
591
+ def visualize_sampling3D(self, data_dict, mode='vis'):
592
+
593
+ # create plot
594
+ vp = vedo.Plotter(title="", size=(1500, 1500), axes=0, bg='white')
595
+ vis_list = []
596
+
597
+ assert mode in ['vis', 'sdf', 'normal', 'cmap', 'occ']
598
+
599
+ # sdf-1 cmap-3 norm-3 vis-1
600
+ if mode == 'vis':
601
+ labels = data_dict[f'smpl_feat'][:, [-1]] # visibility
602
+ colors = np.concatenate([labels, labels, labels], axis=1)
603
+ elif mode == 'occ':
604
+ labels = data_dict[f'labels_geo'][..., None] # occupancy
605
+ colors = np.concatenate([labels, labels, labels], axis=1)
606
+ elif mode == 'sdf':
607
+ labels = data_dict[f'smpl_feat'][:, [0]] # sdf
608
+ labels -= labels.min()
609
+ labels /= labels.max()
610
+ colors = np.concatenate([labels, labels, labels], axis=1)
611
+ elif mode == 'normal':
612
+ labels = data_dict[f'smpl_feat'][:, -4:-1] # normal
613
+ colors = (labels + 1.0) * 0.5
614
+ elif mode == 'cmap':
615
+ labels = data_dict[f'smpl_feat'][:, -7:-4] # colormap
616
+ colors = np.array(labels)
617
+
618
+ points = projection(data_dict['samples_geo'], data_dict['calib'])
619
+ verts = projection(data_dict['verts'], data_dict['calib'])
620
+ points[:, 1] *= -1
621
+ verts[:, 1] *= -1
622
+
623
+ # create a mesh
624
+ mesh = trimesh.Trimesh(verts, data_dict['faces'], process=True)
625
+ mesh.visual.vertex_colors = [128.0, 128.0, 128.0, 255.0]
626
+ vis_list.append(mesh)
627
+
628
+ if 'voxel_verts' in data_dict.keys():
629
+ print(colored("voxel verts", "green"))
630
+ voxel_verts = data_dict['voxel_verts'] * 2.0
631
+ voxel_faces = data_dict['voxel_faces']
632
+ voxel_verts[:, 1] *= -1
633
+ voxel = trimesh.Trimesh(
634
+ voxel_verts, voxel_faces[:, [0, 2, 1]], process=False, maintain_order=True)
635
+ voxel.visual.vertex_colors = [0.0, 128.0, 0.0, 255.0]
636
+ vis_list.append(voxel)
637
+
638
+ if 'smpl_verts' in data_dict.keys():
639
+ print(colored("smpl verts", "green"))
640
+ smplx_verts = data_dict['smpl_verts']
641
+ smplx_faces = data_dict['smpl_faces']
642
+ smplx_verts[:, 1] *= -1
643
+ smplx = trimesh.Trimesh(
644
+ smplx_verts, smplx_faces[:, [0, 2, 1]], process=False, maintain_order=True)
645
+ smplx.visual.vertex_colors = [128.0, 128.0, 0.0, 255.0]
646
+ vis_list.append(smplx)
647
+
648
+ # create a picure
649
+ img_pos = [1.0, 0.0, -1.0]
650
+ for img_id, img_key in enumerate(['normal_F', 'image', 'T_normal_B']):
651
+ image_arr = (data_dict[img_key].detach().cpu().permute(
652
+ 1, 2, 0).numpy() + 1.0) * 0.5 * 255.0
653
+ image_dim = image_arr.shape[0]
654
+ image = vedo.Picture(image_arr).scale(
655
+ 2.0 / image_dim).pos(-1.0, -1.0, img_pos[img_id])
656
+ vis_list.append(image)
657
+
658
+ # create a pointcloud
659
+ pc = vedo.Points(points, r=15, c=np.float32(colors))
660
+ vis_list.append(pc)
661
+
662
+ vp.show(*vis_list, bg="white", axes=1.0, interactive=True)
lib/dataset/TestDataset.py CHANGED
@@ -15,9 +15,7 @@
15
  #
16
  # Contact: ps-license@tuebingen.mpg.de
17
 
18
- import os
19
-
20
- import lib.smplx as smplx
21
  from lib.pymaf.utils.geometry import rotation_matrix_to_angle_axis, batch_rodrigues
22
  from lib.pymaf.utils.imutils import process_image
23
  from lib.pymaf.core import path_config
@@ -27,12 +25,14 @@ from lib.common.render import Render
27
  from lib.dataset.body_model import TetraSMPLModel
28
  from lib.dataset.mesh_util import get_visibility, SMPLX
29
  import os.path as osp
 
30
  import torch
 
31
  import numpy as np
32
  import random
 
33
  from termcolor import colored
34
  from PIL import ImageFile
35
- from huggingface_hub import cached_download
36
 
37
  ImageFile.LOAD_TRUNCATED_IMAGES = True
38
 
@@ -42,7 +42,7 @@ class TestDataset():
42
 
43
  random.seed(1993)
44
 
45
- self.image_path = cfg['image_path']
46
  self.seg_dir = cfg['seg_dir']
47
  self.has_det = cfg['has_det']
48
  self.hps_type = cfg['hps_type']
@@ -51,7 +51,19 @@ class TestDataset():
51
 
52
  self.device = device
53
 
54
- self.subject_list = [self.image_path]
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  # smpl related
57
  self.smpl_data = SMPLX()
@@ -100,9 +112,9 @@ class TestDataset():
100
  def compute_voxel_verts(self, body_pose, global_orient, betas, trans,
101
  scale):
102
 
103
- smpl_path = cached_download(osp.join(self.smpl_data.model_dir, "smpl/SMPL_NEUTRAL.pkl"), use_auth_token=os.environ['ICON'])
104
- tetra_path = cached_download(osp.join(self.smpl_data.tedra_dir,
105
- 'tetra_neutral_adult_smpl.npz'), use_auth_token=os.environ['ICON'])
106
  smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult')
107
 
108
  pose = torch.cat([global_orient[0], body_pose[0]], dim=0)
@@ -112,8 +124,8 @@ class TestDataset():
112
  verts = np.concatenate(
113
  [smpl_model.verts, smpl_model.verts_added],
114
  axis=0) * scale.item() + trans.detach().cpu().numpy()
115
- faces = np.loadtxt(cached_download(osp.join(self.smpl_data.tedra_dir,
116
- 'tetrahedrons_neutral_adult.txt'), use_auth_token=os.environ['ICON']),
117
  dtype=np.int32) - 1
118
 
119
  pad_v_num = int(8000 - verts.shape[0])
@@ -148,7 +160,7 @@ class TestDataset():
148
 
149
  if self.seg_dir is None:
150
  img_icon, img_hps, img_ori, img_mask, uncrop_param = process_image(
151
- img_path, self.hps_type, 512, self.device)
152
 
153
  data_dict = {
154
  'name': img_name,
@@ -160,7 +172,7 @@ class TestDataset():
160
 
161
  else:
162
  img_icon, img_hps, img_ori, img_mask, uncrop_param, segmentations = process_image(
163
- img_path, self.hps_type, 512, self.device,
164
  seg_path=os.path.join(self.seg_dir, f'{img_name}.json'))
165
  data_dict = {
166
  'name': img_name,
@@ -233,11 +245,6 @@ class TestDataset():
233
  # body_pose - [1, 23, 3, 3] / [1, 21, 3, 3]
234
  # global_orient - [1, 1, 3, 3]
235
  # smpl_verts - [1, 6890, 3] / [1, 10475, 3]
236
-
237
- # from rot_mat to rot_6d for better optimization
238
- N_body = data_dict["body_pose"].shape[1]
239
- data_dict["body_pose"] = data_dict["body_pose"][:, :, :, :2].reshape(1, N_body,-1)
240
- data_dict["global_orient"] = data_dict["global_orient"][:, :, :, :2].reshape(1, 1,-1)
241
 
242
  return data_dict
243
 
@@ -252,3 +259,84 @@ class TestDataset():
252
  # render optimized mesh (normal, T_normal, image [-1,1])
253
  self.render.load_meshes(verts, faces)
254
  return self.render.get_depth_map(cam_ids=[0, 2])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  #
16
  # Contact: ps-license@tuebingen.mpg.de
17
 
18
+ import smplx
 
 
19
  from lib.pymaf.utils.geometry import rotation_matrix_to_angle_axis, batch_rodrigues
20
  from lib.pymaf.utils.imutils import process_image
21
  from lib.pymaf.core import path_config
 
25
  from lib.dataset.body_model import TetraSMPLModel
26
  from lib.dataset.mesh_util import get_visibility, SMPLX
27
  import os.path as osp
28
+ import os
29
  import torch
30
+ import glob
31
  import numpy as np
32
  import random
33
+ import human_det
34
  from termcolor import colored
35
  from PIL import ImageFile
 
36
 
37
  ImageFile.LOAD_TRUNCATED_IMAGES = True
38
 
 
42
 
43
  random.seed(1993)
44
 
45
+ self.image_dir = cfg['image_dir']
46
  self.seg_dir = cfg['seg_dir']
47
  self.has_det = cfg['has_det']
48
  self.hps_type = cfg['hps_type']
 
51
 
52
  self.device = device
53
 
54
+ if self.has_det:
55
+ self.det = human_det.Detection()
56
+ else:
57
+ self.det = None
58
+
59
+ keep_lst = sorted(glob.glob(f"{self.image_dir}/*"))
60
+ img_fmts = ['jpg', 'png', 'jpeg', "JPG", 'bmp']
61
+ keep_lst = [
62
+ item for item in keep_lst if item.split(".")[-1] in img_fmts
63
+ ]
64
+
65
+ self.subject_list = sorted(
66
+ [item for item in keep_lst if item.split(".")[-1] in img_fmts])
67
 
68
  # smpl related
69
  self.smpl_data = SMPLX()
 
112
  def compute_voxel_verts(self, body_pose, global_orient, betas, trans,
113
  scale):
114
 
115
+ smpl_path = osp.join(self.smpl_data.model_dir, "smpl/SMPL_NEUTRAL.pkl")
116
+ tetra_path = osp.join(self.smpl_data.tedra_dir,
117
+ 'tetra_neutral_adult_smpl.npz')
118
  smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult')
119
 
120
  pose = torch.cat([global_orient[0], body_pose[0]], dim=0)
 
124
  verts = np.concatenate(
125
  [smpl_model.verts, smpl_model.verts_added],
126
  axis=0) * scale.item() + trans.detach().cpu().numpy()
127
+ faces = np.loadtxt(osp.join(self.smpl_data.tedra_dir,
128
+ 'tetrahedrons_neutral_adult.txt'),
129
  dtype=np.int32) - 1
130
 
131
  pad_v_num = int(8000 - verts.shape[0])
 
160
 
161
  if self.seg_dir is None:
162
  img_icon, img_hps, img_ori, img_mask, uncrop_param = process_image(
163
+ img_path, self.det, self.hps_type, 512, self.device)
164
 
165
  data_dict = {
166
  'name': img_name,
 
172
 
173
  else:
174
  img_icon, img_hps, img_ori, img_mask, uncrop_param, segmentations = process_image(
175
+ img_path, self.det, self.hps_type, 512, self.device,
176
  seg_path=os.path.join(self.seg_dir, f'{img_name}.json'))
177
  data_dict = {
178
  'name': img_name,
 
245
  # body_pose - [1, 23, 3, 3] / [1, 21, 3, 3]
246
  # global_orient - [1, 1, 3, 3]
247
  # smpl_verts - [1, 6890, 3] / [1, 10475, 3]
 
 
 
 
 
248
 
249
  return data_dict
250
 
 
259
  # render optimized mesh (normal, T_normal, image [-1,1])
260
  self.render.load_meshes(verts, faces)
261
  return self.render.get_depth_map(cam_ids=[0, 2])
262
+
263
+ def visualize_alignment(self, data):
264
+
265
+ import vedo
266
+ import trimesh
267
+
268
+ if self.hps_type != 'pixie':
269
+ smpl_out = self.smpl_model(betas=data['betas'],
270
+ body_pose=data['body_pose'],
271
+ global_orient=data['global_orient'],
272
+ pose2rot=False)
273
+ smpl_verts = (
274
+ (smpl_out.vertices + data['trans']) * data['scale']).detach().cpu().numpy()[0]
275
+ else:
276
+ smpl_verts, _, _ = self.smpl_model(shape_params=data['betas'],
277
+ expression_params=data['exp'],
278
+ body_pose=data['body_pose'],
279
+ global_pose=data['global_orient'],
280
+ jaw_pose=data['jaw_pose'],
281
+ left_hand_pose=data['left_hand_pose'],
282
+ right_hand_pose=data['right_hand_pose'])
283
+
284
+ smpl_verts = (
285
+ (smpl_verts + data['trans']) * data['scale']).detach().cpu().numpy()[0]
286
+
287
+ smpl_verts *= np.array([1.0, -1.0, -1.0])
288
+ faces = data['smpl_faces'][0].detach().cpu().numpy()
289
+
290
+ image_P = data['image']
291
+ image_F, image_B = self.render_normal(smpl_verts, faces)
292
+
293
+ # create plot
294
+ vp = vedo.Plotter(title="", size=(1500, 1500))
295
+ vis_list = []
296
+
297
+ image_F = (
298
+ 0.5 * (1.0 + image_F[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0)
299
+ image_B = (
300
+ 0.5 * (1.0 + image_B[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0)
301
+ image_P = (
302
+ 0.5 * (1.0 + image_P[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0)
303
+
304
+ vis_list.append(vedo.Picture(image_P*0.5+image_F *
305
+ 0.5).scale(2.0/image_P.shape[0]).pos(-1.0, -1.0, 1.0))
306
+ vis_list.append(vedo.Picture(image_F).scale(
307
+ 2.0/image_F.shape[0]).pos(-1.0, -1.0, -0.5))
308
+ vis_list.append(vedo.Picture(image_B).scale(
309
+ 2.0/image_B.shape[0]).pos(-1.0, -1.0, -1.0))
310
+
311
+ # create a mesh
312
+ mesh = trimesh.Trimesh(smpl_verts, faces, process=False)
313
+ mesh.visual.vertex_colors = [200, 200, 0]
314
+ vis_list.append(mesh)
315
+
316
+ vp.show(*vis_list, bg="white", axes=1, interactive=True)
317
+
318
+
319
+ if __name__ == '__main__':
320
+
321
+ cfg.merge_from_file("./configs/icon-filter.yaml")
322
+ cfg.merge_from_file('./lib/pymaf/configs/pymaf_config.yaml')
323
+
324
+ cfg_show_list = [
325
+ 'test_gpus', ['0'], 'mcube_res', 512, 'clean_mesh', False
326
+ ]
327
+
328
+ cfg.merge_from_list(cfg_show_list)
329
+ cfg.freeze()
330
+
331
+ os.environ['CUDA_VISIBLE_DEVICES'] = "0"
332
+ device = torch.device('cuda:0')
333
+
334
+ dataset = TestDataset(
335
+ {
336
+ 'image_dir': "./examples",
337
+ 'has_det': True, # w/ or w/o detection
338
+ 'hps_type': 'bev' # pymaf/pare/pixie/hybrik/bev
339
+ }, device)
340
+
341
+ for i in range(len(dataset)):
342
+ dataset.visualize_alignment(dataset[i])
lib/dataset/mesh_util.py CHANGED
@@ -17,17 +17,18 @@
17
 
18
  import numpy as np
19
  import cv2
 
20
  import torch
21
  import torchvision
22
  import trimesh
23
  from pytorch3d.io import load_obj
 
24
  from termcolor import colored
 
25
  from scipy.spatial import cKDTree
26
 
27
  from pytorch3d.structures import Meshes
28
  import torch.nn.functional as F
29
-
30
- import os
31
  from lib.pymaf.utils.imutils import uncrop
32
  from lib.common.render_utils import Pytorch3dRasterizer, face_vertices
33
 
@@ -41,24 +42,6 @@ from pytorch3d.loss import (
41
  mesh_normal_consistency
42
  )
43
 
44
- from huggingface_hub import hf_hub_download, hf_hub_url, cached_download
45
-
46
- def rot6d_to_rotmat(x):
47
- """Convert 6D rotation representation to 3x3 rotation matrix.
48
- Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
49
- Input:
50
- (B,6) Batch of 6-D rotation representations
51
- Output:
52
- (B,3,3) Batch of corresponding rotation matrices
53
- """
54
- x = x.view(-1, 3, 2)
55
- a1 = x[:, :, 0]
56
- a2 = x[:, :, 1]
57
- b1 = F.normalize(a1)
58
- b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1)
59
- b3 = torch.cross(b1, b2)
60
- return torch.stack((b1, b2, b3), dim=-1)
61
-
62
 
63
  def tensor2variable(tensor, device):
64
  # [1,23,3,3]
@@ -137,18 +120,32 @@ def mesh_edge_loss(meshes, target_length: float = 0.0):
137
 
138
 
139
  def remesh(obj_path, perc, device):
140
- mesh = trimesh.load(obj_path)
141
- mesh = mesh.simplify_quadratic_decimation(50000)
142
- mesh = trimesh.smoothing.filter_humphrey(
143
- mesh, alpha=0.1, beta=0.5, iterations=10, laplacian_operator=None
144
- )
145
- mesh.export(obj_path.replace("recon", "remesh"))
146
- verts_pr = torch.tensor(mesh.vertices).float().unsqueeze(0).to(device)
147
- faces_pr = torch.tensor(mesh.faces).long().unsqueeze(0).to(device)
 
 
148
 
149
  return verts_pr, faces_pr
150
 
151
 
 
 
 
 
 
 
 
 
 
 
 
 
152
  def get_mask(tensor, dim):
153
 
154
  mask = torch.abs(tensor).sum(dim=dim, keepdims=True) > 0.0
@@ -208,31 +205,33 @@ def load_checkpoint(model, cfg):
208
 
209
  device = torch.device(f"cuda:{cfg['test_gpus'][0]}")
210
 
211
- main_dict = torch.load(cached_download(cfg.resume_path, use_auth_token=os.environ['ICON']),
212
- map_location=device)['state_dict']
213
-
214
- main_dict = {
215
- k: v
216
- for k, v in main_dict.items()
217
- if k in model_dict and v.shape == model_dict[k].shape and (
218
- 'reconEngine' not in k) and ("normal_filter" not in k) and (
219
- 'voxelization' not in k)
220
- }
221
- print(colored(f"Resume MLP weights from {cfg.resume_path}", 'green'))
222
-
223
- normal_dict = torch.load(cached_download(cfg.normal_path, use_auth_token=os.environ['ICON']),
224
- map_location=device)['state_dict']
225
-
226
- for key in normal_dict.keys():
227
- normal_dict = rename(normal_dict, key,
228
- key.replace("netG", "netG.normal_filter"))
229
-
230
- normal_dict = {
231
- k: v
232
- for k, v in normal_dict.items()
233
- if k in model_dict and v.shape == model_dict[k].shape
234
- }
235
- print(colored(f"Resume normal model from {cfg.normal_path}", 'green'))
 
 
236
 
237
  model_dict.update(main_dict)
238
  model_dict.update(normal_dict)
@@ -253,7 +252,7 @@ def load_checkpoint(model, cfg):
253
 
254
  def read_smpl_constants(folder):
255
  """Load smpl vertex code"""
256
- smpl_vtx_std = np.loadtxt(cached_download(os.path.join(folder, 'vertices.txt'), use_auth_token=os.environ['ICON']))
257
  min_x = np.min(smpl_vtx_std[:, 0])
258
  max_x = np.max(smpl_vtx_std[:, 0])
259
  min_y = np.min(smpl_vtx_std[:, 1])
@@ -266,12 +265,12 @@ def read_smpl_constants(folder):
266
  smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z)
267
  smpl_vertex_code = np.float32(np.copy(smpl_vtx_std))
268
  """Load smpl faces & tetrahedrons"""
269
- smpl_faces = np.loadtxt(cached_download(os.path.join(folder, 'faces.txt'), use_auth_token=os.environ['ICON']),
270
  dtype=np.int32) - 1
271
  smpl_face_code = (smpl_vertex_code[smpl_faces[:, 0]] +
272
  smpl_vertex_code[smpl_faces[:, 1]] +
273
  smpl_vertex_code[smpl_faces[:, 2]]) / 3.0
274
- smpl_tetras = np.loadtxt(cached_download(os.path.join(folder, 'tetrahedrons.txt'), use_auth_token=os.environ['ICON']),
275
  dtype=np.int32) - 1
276
 
277
  return smpl_vertex_code, smpl_face_code, smpl_faces, smpl_tetras
@@ -397,12 +396,11 @@ def cal_sdf_batch(verts, faces, cmaps, vis, points):
397
  bary_weights = barycentric_coordinates_of_projection(
398
  points.view(-1, 3), closest_triangles)
399
 
400
- pts_cmap = (closest_cmaps*bary_weights[:, :, None]).sum(1).unsqueeze(0).clamp_(min=0.0, max=1.0)
401
  pts_vis = (closest_vis*bary_weights[:,
402
  :, None]).sum(1).unsqueeze(0).ge(1e-1)
403
  pts_norm = (closest_normals*bary_weights[:, :, None]).sum(
404
  1).unsqueeze(0) * torch.tensor([-1.0, 1.0, -1.0]).type_as(normals)
405
- pts_norm = F.normalize(pts_norm, dim=2)
406
  pts_dist = torch.sqrt(residues) / torch.sqrt(torch.tensor(3))
407
 
408
  pts_signs = 2.0 * (check_sign(verts, faces[0], points).float() - 0.5)
@@ -844,21 +842,26 @@ def mesh_move(mesh_lst, step, scale=1.0):
844
 
845
  class SMPLX():
846
  def __init__(self):
847
-
848
- REPO_ID = "Yuliang/SMPL"
849
 
850
- self.smpl_verts_path = hf_hub_download(REPO_ID, filename='smpl_data/smpl_verts.npy', use_auth_token=os.environ['ICON'])
851
- self.smplx_verts_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_verts.npy', use_auth_token=os.environ['ICON'])
852
- self.faces_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_faces.npy', use_auth_token=os.environ['ICON'])
853
- self.cmap_vert_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_cmap.npy', use_auth_token=os.environ['ICON'])
 
 
 
 
 
 
 
854
 
855
  self.faces = np.load(self.faces_path)
856
  self.verts = np.load(self.smplx_verts_path)
857
  self.smpl_verts = np.load(self.smpl_verts_path)
858
 
859
- self.model_dir = hf_hub_url(REPO_ID, filename='models')
860
- self.tedra_dir = hf_hub_url(REPO_ID, filename='tedra_data')
861
-
862
  def get_smpl_mat(self, vert_ids):
863
 
864
  mat = torch.as_tensor(np.load(self.cmap_vert_path)).float()
 
17
 
18
  import numpy as np
19
  import cv2
20
+ import pymeshlab
21
  import torch
22
  import torchvision
23
  import trimesh
24
  from pytorch3d.io import load_obj
25
+ import os
26
  from termcolor import colored
27
+ import os.path as osp
28
  from scipy.spatial import cKDTree
29
 
30
  from pytorch3d.structures import Meshes
31
  import torch.nn.functional as F
 
 
32
  from lib.pymaf.utils.imutils import uncrop
33
  from lib.common.render_utils import Pytorch3dRasterizer, face_vertices
34
 
 
42
  mesh_normal_consistency
43
  )
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  def tensor2variable(tensor, device):
47
  # [1,23,3,3]
 
120
 
121
 
122
  def remesh(obj_path, perc, device):
123
+
124
+ ms = pymeshlab.MeshSet()
125
+ ms.load_new_mesh(obj_path)
126
+ ms.laplacian_smooth()
127
+ ms.remeshing_isotropic_explicit_remeshing(
128
+ targetlen=pymeshlab.Percentage(perc), adaptive=True)
129
+ ms.save_current_mesh(obj_path.replace("recon", "remesh"))
130
+ polished_mesh = trimesh.load_mesh(obj_path.replace("recon", "remesh"))
131
+ verts_pr = torch.tensor(polished_mesh.vertices).float().unsqueeze(0).to(device)
132
+ faces_pr = torch.tensor(polished_mesh.faces).long().unsqueeze(0).to(device)
133
 
134
  return verts_pr, faces_pr
135
 
136
 
137
+ def possion(mesh, obj_path):
138
+
139
+ mesh.export(obj_path)
140
+ ms = pymeshlab.MeshSet()
141
+ ms.load_new_mesh(obj_path)
142
+ ms.surface_reconstruction_screened_poisson(depth=10)
143
+ ms.set_current_mesh(1)
144
+ ms.save_current_mesh(obj_path)
145
+
146
+ return trimesh.load(obj_path)
147
+
148
+
149
  def get_mask(tensor, dim):
150
 
151
  mask = torch.abs(tensor).sum(dim=dim, keepdims=True) > 0.0
 
205
 
206
  device = torch.device(f"cuda:{cfg['test_gpus'][0]}")
207
 
208
+ if os.path.exists(cfg.resume_path) and cfg.resume_path.endswith("ckpt"):
209
+ main_dict = torch.load(cfg.resume_path,
210
+ map_location=device)['state_dict']
211
+
212
+ main_dict = {
213
+ k: v
214
+ for k, v in main_dict.items()
215
+ if k in model_dict and v.shape == model_dict[k].shape and (
216
+ 'reconEngine' not in k) and ("normal_filter" not in k) and (
217
+ 'voxelization' not in k)
218
+ }
219
+ print(colored(f"Resume MLP weights from {cfg.resume_path}", 'green'))
220
+
221
+ if os.path.exists(cfg.normal_path) and cfg.normal_path.endswith("ckpt"):
222
+ normal_dict = torch.load(cfg.normal_path,
223
+ map_location=device)['state_dict']
224
+
225
+ for key in normal_dict.keys():
226
+ normal_dict = rename(normal_dict, key,
227
+ key.replace("netG", "netG.normal_filter"))
228
+
229
+ normal_dict = {
230
+ k: v
231
+ for k, v in normal_dict.items()
232
+ if k in model_dict and v.shape == model_dict[k].shape
233
+ }
234
+ print(colored(f"Resume normal model from {cfg.normal_path}", 'green'))
235
 
236
  model_dict.update(main_dict)
237
  model_dict.update(normal_dict)
 
252
 
253
  def read_smpl_constants(folder):
254
  """Load smpl vertex code"""
255
+ smpl_vtx_std = np.loadtxt(os.path.join(folder, 'vertices.txt'))
256
  min_x = np.min(smpl_vtx_std[:, 0])
257
  max_x = np.max(smpl_vtx_std[:, 0])
258
  min_y = np.min(smpl_vtx_std[:, 1])
 
265
  smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z)
266
  smpl_vertex_code = np.float32(np.copy(smpl_vtx_std))
267
  """Load smpl faces & tetrahedrons"""
268
+ smpl_faces = np.loadtxt(os.path.join(folder, 'faces.txt'),
269
  dtype=np.int32) - 1
270
  smpl_face_code = (smpl_vertex_code[smpl_faces[:, 0]] +
271
  smpl_vertex_code[smpl_faces[:, 1]] +
272
  smpl_vertex_code[smpl_faces[:, 2]]) / 3.0
273
+ smpl_tetras = np.loadtxt(os.path.join(folder, 'tetrahedrons.txt'),
274
  dtype=np.int32) - 1
275
 
276
  return smpl_vertex_code, smpl_face_code, smpl_faces, smpl_tetras
 
396
  bary_weights = barycentric_coordinates_of_projection(
397
  points.view(-1, 3), closest_triangles)
398
 
399
+ pts_cmap = (closest_cmaps*bary_weights[:, :, None]).sum(1).unsqueeze(0)
400
  pts_vis = (closest_vis*bary_weights[:,
401
  :, None]).sum(1).unsqueeze(0).ge(1e-1)
402
  pts_norm = (closest_normals*bary_weights[:, :, None]).sum(
403
  1).unsqueeze(0) * torch.tensor([-1.0, 1.0, -1.0]).type_as(normals)
 
404
  pts_dist = torch.sqrt(residues) / torch.sqrt(torch.tensor(3))
405
 
406
  pts_signs = 2.0 * (check_sign(verts, faces[0], points).float() - 0.5)
 
842
 
843
  class SMPLX():
844
  def __init__(self):
 
 
845
 
846
+ self.current_dir = osp.join(osp.dirname(__file__),
847
+ "../../data/smpl_related")
848
+
849
+ self.smpl_verts_path = osp.join(self.current_dir,
850
+ "smpl_data/smpl_verts.npy")
851
+ self.smplx_verts_path = osp.join(self.current_dir,
852
+ "smpl_data/smplx_verts.npy")
853
+ self.faces_path = osp.join(self.current_dir,
854
+ "smpl_data/smplx_faces.npy")
855
+ self.cmap_vert_path = osp.join(self.current_dir,
856
+ "smpl_data/smplx_cmap.npy")
857
 
858
  self.faces = np.load(self.faces_path)
859
  self.verts = np.load(self.smplx_verts_path)
860
  self.smpl_verts = np.load(self.smpl_verts_path)
861
 
862
+ self.model_dir = osp.join(self.current_dir, "models")
863
+ self.tedra_dir = osp.join(self.current_dir, "../tedra_data")
864
+
865
  def get_smpl_mat(self, vert_ids):
866
 
867
  mat = torch.as_tensor(np.load(self.cmap_vert_path)).float()
lib/net/FBNet.py CHANGED
@@ -81,8 +81,7 @@ def define_G(input_nc,
81
  # print(netG)
82
  if len(gpu_ids) > 0:
83
  assert (torch.cuda.is_available())
84
- device=torch.device(f"cuda:{gpu_ids[0]}")
85
- netG = netG.to(device)
86
  netG.apply(weights_init)
87
  return netG
88
 
 
81
  # print(netG)
82
  if len(gpu_ids) > 0:
83
  assert (torch.cuda.is_available())
84
+ netG.cuda(gpu_ids[0])
 
85
  netG.apply(weights_init)
86
  return netG
87
 
lib/net/HGPIFuNet.py CHANGED
@@ -15,7 +15,7 @@
15
  #
16
  # Contact: ps-license@tuebingen.mpg.de
17
 
18
- # from lib.net.voxelize import Voxelization
19
  from lib.dataset.mesh_util import cal_sdf_batch, feat_select, read_smpl_constants
20
  from lib.net.NormalNet import NormalNet
21
  from lib.net.MLP import MLP
@@ -26,6 +26,7 @@ from termcolor import colored
26
  from lib.net.BasePIFuNet import BasePIFuNet
27
  import torch.nn as nn
28
  import torch
 
29
 
30
 
31
  maskout = False
@@ -293,8 +294,14 @@ class HGPIFuNet(BasePIFuNet):
293
  # smpl_cmap [B, N, 3]
294
  # smpl_vis [B, N, 1]
295
 
 
 
 
 
296
  feat_lst = [smpl_sdf]
297
  if 'cmap' in self.smpl_feats:
 
 
298
  feat_lst.append(smpl_cmap)
299
  if 'norm' in self.smpl_feats:
300
  feat_lst.append(smpl_norm)
 
15
  #
16
  # Contact: ps-license@tuebingen.mpg.de
17
 
18
+ from lib.net.voxelize import Voxelization
19
  from lib.dataset.mesh_util import cal_sdf_batch, feat_select, read_smpl_constants
20
  from lib.net.NormalNet import NormalNet
21
  from lib.net.MLP import MLP
 
26
  from lib.net.BasePIFuNet import BasePIFuNet
27
  import torch.nn as nn
28
  import torch
29
+ import os
30
 
31
 
32
  maskout = False
 
294
  # smpl_cmap [B, N, 3]
295
  # smpl_vis [B, N, 1]
296
 
297
+ # set ourlier point features as uniform values
298
+ smpl_outlier = torch.abs(smpl_sdf).ge(self.sdf_clip)
299
+ smpl_sdf[smpl_outlier] = torch.sign(smpl_sdf[smpl_outlier])
300
+
301
  feat_lst = [smpl_sdf]
302
  if 'cmap' in self.smpl_feats:
303
+ smpl_cmap[smpl_outlier.repeat(
304
+ 1, 1, 3)] = smpl_sdf[smpl_outlier].repeat(1, 1, 3)
305
  feat_lst.append(smpl_cmap)
306
  if 'norm' in self.smpl_feats:
307
  feat_lst.append(smpl_norm)
lib/net/net_util.py CHANGED
@@ -316,7 +316,7 @@ class Vgg19(torch.nn.Module):
316
  class VGGLoss(nn.Module):
317
  def __init__(self):
318
  super(VGGLoss, self).__init__()
319
- self.vgg = Vgg19()
320
  self.criterion = nn.L1Loss()
321
  self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]
322
 
 
316
  class VGGLoss(nn.Module):
317
  def __init__(self):
318
  super(VGGLoss, self).__init__()
319
+ self.vgg = Vgg19().cuda()
320
  self.criterion = nn.L1Loss()
321
  self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]
322
 
lib/pymaf/core/path_config.py CHANGED
@@ -6,18 +6,33 @@ for the datasets and data files necessary to run the code.
6
  Things you need to change: *_ROOT that indicate the path to each dataset
7
  """
8
  import os
9
- from huggingface_hub import hf_hub_url, cached_download
10
 
11
  # pymaf
12
- pymaf_data_dir = hf_hub_url('Yuliang/PyMAF', '')
13
- smpl_data_dir = hf_hub_url('Yuliang/SMPL', '')
14
- SMPL_MODEL_DIR = os.path.join(smpl_data_dir, 'models/smpl')
15
 
16
- SMPL_MEAN_PARAMS = cached_download(os.path.join(pymaf_data_dir, 'smpl_mean_params.npz'), use_auth_token=os.environ['ICON'])
17
- MESH_DOWNSAMPLEING = cached_download(os.path.join(pymaf_data_dir, 'mesh_downsampling.npz'), use_auth_token=os.environ['ICON'])
18
- CUBE_PARTS_FILE = cached_download(os.path.join(pymaf_data_dir, 'cube_parts.npy'), use_auth_token=os.environ['ICON'])
19
- JOINT_REGRESSOR_TRAIN_EXTRA = cached_download(os.path.join(pymaf_data_dir, 'J_regressor_extra.npy'), use_auth_token=os.environ['ICON'])
20
- JOINT_REGRESSOR_H36M = cached_download(os.path.join(pymaf_data_dir, 'J_regressor_h36m.npy'), use_auth_token=os.environ['ICON'])
21
- VERTEX_TEXTURE_FILE = cached_download(os.path.join(pymaf_data_dir, 'vertex_texture.npy'), use_auth_token=os.environ['ICON'])
22
- SMPL_MEAN_PARAMS = cached_download(os.path.join(pymaf_data_dir, 'smpl_mean_params.npz'), use_auth_token=os.environ['ICON'])
23
- CHECKPOINT_FILE = cached_download(os.path.join(pymaf_data_dir, 'pretrained_model/PyMAF_model_checkpoint.pt'), use_auth_token=os.environ['ICON'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  Things you need to change: *_ROOT that indicate the path to each dataset
7
  """
8
  import os
 
9
 
10
  # pymaf
11
+ pymaf_data_dir = os.path.join(os.path.dirname(__file__),
12
+ "../../../data/pymaf_data")
 
13
 
14
+ SMPL_MEAN_PARAMS = os.path.join(pymaf_data_dir, 'smpl_mean_params.npz')
15
+ SMPL_MODEL_DIR = os.path.join(pymaf_data_dir, '../smpl_related/models/smpl')
16
+
17
+ CUBE_PARTS_FILE = os.path.join(pymaf_data_dir, 'cube_parts.npy')
18
+ JOINT_REGRESSOR_TRAIN_EXTRA = os.path.join(pymaf_data_dir,
19
+ 'J_regressor_extra.npy')
20
+ JOINT_REGRESSOR_H36M = os.path.join(pymaf_data_dir, 'J_regressor_h36m.npy')
21
+ VERTEX_TEXTURE_FILE = os.path.join(pymaf_data_dir, 'vertex_texture.npy')
22
+ SMPL_MEAN_PARAMS = os.path.join(pymaf_data_dir, 'smpl_mean_params.npz')
23
+ SMPL_MODEL_DIR = os.path.join(pymaf_data_dir, '../smpl_related/models/smpl')
24
+ CHECKPOINT_FILE = os.path.join(pymaf_data_dir,
25
+ 'pretrained_model/PyMAF_model_checkpoint.pt')
26
+
27
+ # pare
28
+ pare_data_dir = os.path.join(os.path.dirname(__file__),
29
+ "../../../data/pare_data")
30
+ CFG = os.path.join(pare_data_dir, 'pare/checkpoints/pare_w_3dpw_config.yaml')
31
+ CKPT = os.path.join(pare_data_dir,
32
+ 'pare/checkpoints/pare_w_3dpw_checkpoint.ckpt')
33
+
34
+ # hybrik
35
+ hybrik_data_dir = os.path.join(os.path.dirname(__file__),
36
+ "../../../data/hybrik_data")
37
+ HYBRIK_CFG = os.path.join(hybrik_data_dir, 'hybrik_config.yaml')
38
+ HYBRIK_CKPT = os.path.join(hybrik_data_dir, 'pretrained_w_cam.pth')
lib/pymaf/models/maf_extractor.py CHANGED
@@ -3,13 +3,13 @@
3
  from packaging import version
4
  import torch
5
  import scipy
 
6
  import numpy as np
7
  import torch.nn as nn
8
  import torch.nn.functional as F
9
 
10
  from lib.common.config import cfg
11
  from lib.pymaf.utils.geometry import projection
12
- from lib.pymaf.core.path_config import MESH_DOWNSAMPLEING
13
 
14
  import logging
15
 
@@ -48,7 +48,10 @@ class MAF_Extractor(nn.Module):
48
 
49
  # downsample SMPL mesh and assign part labels
50
  # from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz
51
- smpl_mesh_graph = np.load(MESH_DOWNSAMPLEING,
 
 
 
52
  allow_pickle=True,
53
  encoding='latin1')
54
 
 
3
  from packaging import version
4
  import torch
5
  import scipy
6
+ import os
7
  import numpy as np
8
  import torch.nn as nn
9
  import torch.nn.functional as F
10
 
11
  from lib.common.config import cfg
12
  from lib.pymaf.utils.geometry import projection
 
13
 
14
  import logging
15
 
 
48
 
49
  # downsample SMPL mesh and assign part labels
50
  # from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz
51
+ mesh_downsampling_path = os.path.join(
52
+ os.path.dirname(__file__),
53
+ "../../../data/pymaf_data/mesh_downsampling.npz")
54
+ smpl_mesh_graph = np.load(mesh_downsampling_path,
55
  allow_pickle=True,
56
  encoding='latin1')
57
 
lib/pymaf/models/res_module.py CHANGED
@@ -4,11 +4,11 @@ from __future__ import absolute_import
4
  from __future__ import division
5
  from __future__ import print_function
6
 
 
7
  import torch
8
  import torch.nn as nn
9
  import torch.nn.functional as F
10
  from collections import OrderedDict
11
- import os
12
  from lib.pymaf.core.cfgs import cfg
13
 
14
  import logging
 
4
  from __future__ import division
5
  from __future__ import print_function
6
 
7
+ import os
8
  import torch
9
  import torch.nn as nn
10
  import torch.nn.functional as F
11
  from collections import OrderedDict
 
12
  from lib.pymaf.core.cfgs import cfg
13
 
14
  import logging
lib/pymaf/models/smpl.py CHANGED
@@ -2,9 +2,9 @@
2
 
3
  import torch
4
  import numpy as np
5
- from lib.smplx import SMPL as _SMPL
6
- from lib.smplx.body_models import ModelOutput
7
- from lib.smplx.lbs import vertices2joints
8
  from collections import namedtuple
9
 
10
  from lib.pymaf.core import path_config, constants
 
2
 
3
  import torch
4
  import numpy as np
5
+ from smplx import SMPL as _SMPL
6
+ from smplx.body_models import ModelOutput
7
+ from smplx.lbs import vertices2joints
8
  from collections import namedtuple
9
 
10
  from lib.pymaf.core import path_config, constants
lib/pymaf/utils/imutils.py CHANGED
@@ -1,14 +1,15 @@
1
  """
2
  This file contains functions that are used to perform data augmentation.
3
  """
 
4
  import cv2
5
  import io
6
  import torch
7
  import numpy as np
 
8
  from PIL import Image
9
- from rembg import remove
10
- from rembg.session_factory import new_session
11
- from torchvision.models import detection
12
 
13
  from lib.pymaf.core import constants
14
  from lib.pymaf.utils.streamer import aug_matrix
@@ -44,7 +45,6 @@ def get_bbox(img, det):
44
  bbox = bboxes[0, 0, 0].cpu().numpy()
45
 
46
  return bbox
47
- # Michael Black is
48
 
49
 
50
  def get_transformer(input_res):
@@ -86,7 +86,7 @@ def get_transformer(input_res):
86
  return [image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, image_to_pixie_tensor, image_to_hybrik_tensor]
87
 
88
 
89
- def process_image(img_file, hps_type, input_res=512, device=None, seg_path=None):
90
  """Read image, do preprocessing and possibly crop it according to the bounding box.
91
  If there are bounding box annotations, use them to crop the image.
92
  If no bounding box is specified but openpose detections are available, use them to get the bounding box.
@@ -104,19 +104,21 @@ def process_image(img_file, hps_type, input_res=512, device=None, seg_path=None)
104
  img_for_crop = cv2.warpAffine(img_ori, M[0:2, :],
105
  (input_res*2, input_res*2), flags=cv2.INTER_CUBIC)
106
 
107
- # detection for bbox
108
- detector = detection.maskrcnn_resnet50_fpn(pretrained=True)
109
- detector.eval()
110
- predictions = detector(
111
- [torch.from_numpy(img_for_crop).permute(2, 0, 1) / 255.])[0]
112
- human_ids = torch.where(
113
- predictions["scores"] == predictions["scores"][predictions['labels'] == 1].max())
114
- bbox = predictions["boxes"][human_ids, :].flatten().detach().cpu().numpy()
115
-
116
- width = bbox[2] - bbox[0]
117
- height = bbox[3] - bbox[1]
118
- center = np.array([(bbox[0] + bbox[2]) / 2.0,
119
- (bbox[1] + bbox[3]) / 2.0])
 
 
120
 
121
  scale = max(height, width) / 180
122
 
@@ -127,8 +129,12 @@ def process_image(img_file, hps_type, input_res=512, device=None, seg_path=None)
127
  img_np, cropping_parameters = crop(
128
  img_for_crop, center, scale, (input_res, input_res))
129
 
130
- img_pil = Image.fromarray(remove(img_np, post_process_mask=True, session=new_session("u2net")))
131
-
 
 
 
 
132
  # for icon
133
  img_rgb = image_to_tensor(img_pil.convert("RGB"))
134
  img_mask = torch.tensor(1.0) - (mask_to_tensor(img_pil.split()[-1]) <
 
1
  """
2
  This file contains functions that are used to perform data augmentation.
3
  """
4
+ from turtle import reset
5
  import cv2
6
  import io
7
  import torch
8
  import numpy as np
9
+ import scipy.misc
10
  from PIL import Image
11
+ from rembg.bg import remove
12
+ import human_det
 
13
 
14
  from lib.pymaf.core import constants
15
  from lib.pymaf.utils.streamer import aug_matrix
 
45
  bbox = bboxes[0, 0, 0].cpu().numpy()
46
 
47
  return bbox
 
48
 
49
 
50
  def get_transformer(input_res):
 
86
  return [image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, image_to_pixie_tensor, image_to_hybrik_tensor]
87
 
88
 
89
+ def process_image(img_file, det, hps_type, input_res=512, device=None, seg_path=None):
90
  """Read image, do preprocessing and possibly crop it according to the bounding box.
91
  If there are bounding box annotations, use them to crop the image.
92
  If no bounding box is specified but openpose detections are available, use them to get the bounding box.
 
104
  img_for_crop = cv2.warpAffine(img_ori, M[0:2, :],
105
  (input_res*2, input_res*2), flags=cv2.INTER_CUBIC)
106
 
107
+ if det is not None:
108
+
109
+ # detection for bbox
110
+ bbox = get_bbox(img_for_crop, det)
111
+
112
+ width = bbox[2] - bbox[0]
113
+ height = bbox[3] - bbox[1]
114
+ center = np.array([(bbox[0] + bbox[2]) / 2.0,
115
+ (bbox[1] + bbox[3]) / 2.0])
116
+
117
+ else:
118
+ # Assume that the person is centerered in the image
119
+ height = img_for_crop.shape[0]
120
+ width = img_for_crop.shape[1]
121
+ center = np.array([width // 2, height // 2])
122
 
123
  scale = max(height, width) / 180
124
 
 
129
  img_np, cropping_parameters = crop(
130
  img_for_crop, center, scale, (input_res, input_res))
131
 
132
+ with torch.no_grad():
133
+ buf = io.BytesIO()
134
+ Image.fromarray(img_np).save(buf, format='png')
135
+ img_pil = Image.open(
136
+ io.BytesIO(remove(buf.getvalue()))).convert("RGBA")
137
+
138
  # for icon
139
  img_rgb = image_to_tensor(img_pil.convert("RGB"))
140
  img_mask = torch.tensor(1.0) - (mask_to_tensor(img_pil.split()[-1]) <
lib/renderer/mesh.py CHANGED
@@ -18,7 +18,7 @@
18
  from lib.dataset.mesh_util import SMPLX
19
  from lib.common.render_utils import face_vertices
20
  import numpy as np
21
- import lib.smplx as smplx
22
  import trimesh
23
  import torch
24
  import torch.nn.functional as F
 
18
  from lib.dataset.mesh_util import SMPLX
19
  from lib.common.render_utils import face_vertices
20
  import numpy as np
21
+ import smplx
22
  import trimesh
23
  import torch
24
  import torch.nn.functional as F