|
import gradio as gr |
|
|
|
gr.load("models/mistralai/Mistral-Nemo-Instruct-2407").launch() |
|
|
|
import gradio as gr |
|
import torch |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
|
|
|
|
model_name = "blackmamba" |
|
model = GPT2LMHeadModel.from_pretrained(model_name) |
|
tokenizer = GPT2Tokenizer.from_pretrained(model_name) |
|
|
|
def generate_text(prompt, max_length=50): |
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return generated_text |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_text, |
|
inputs="text", |
|
outputs="text", |
|
title="WormGPT", |
|
description="An evil brother of ChatGPT for Hugging Face Gradio" |
|
) |
|
|
|
|
|
iface.launch() |