|
import os |
|
import cv2 |
|
import shutil |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def build_fold(path): |
|
if os.path.exists(path): |
|
return True |
|
|
|
|
|
os.makedirs(path) |
|
return False |
|
|
|
|
|
def visualize_frame_with_mask(grid0, grid1, grid2, a0_mask, a1_mask, a2_mask, point_coords, resolution, name, args=None): |
|
os.makedirs(name + 'frames_seg', exist_ok=True) |
|
a0_dir, a1_dir, a2_dir = name + 'frames_seg/x', name + 'frames_seg/y', name + 'frames_seg/z' |
|
|
|
|
|
|
|
a0_mask, a1_mask, a2_mask = a0_mask.repeat(1, 3, 1, 1), a1_mask.repeat(1, 3, 1, 1), a2_mask.repeat(1, 3, 1, 1) |
|
a0_mask[:, 1:], a1_mask[:, 1:], a2_mask[:, 1:] = a0_mask[:, 1:] * 0, a1_mask[:, 1:] * 0, a2_mask[:, 1:] * 0 |
|
|
|
grid0, grid1, grid2 = grid0 * 0.7 + a0_mask * 0.3, grid1 * 0.7 + a1_mask * 0.3, grid2 * 0.7 + a2_mask * 0.3 |
|
|
|
grid0[point_coords[0], :, point_coords[1], point_coords[2]] = torch.Tensor([0., 1., 0.]) |
|
grid1[point_coords[1], :, point_coords[0], point_coords[2]] = torch.Tensor([0., 1., 0.]) |
|
grid2[point_coords[2], :, point_coords[0], point_coords[1]] = torch.Tensor([0., 1., 0.]) |
|
if not build_fold(a0_dir): |
|
visualize_per_frame(grid0, a0_dir, resolution, args) |
|
if not build_fold(a1_dir): |
|
visualize_per_frame(grid1, a1_dir, resolution, args) |
|
if not build_fold(a2_dir): |
|
visualize_per_frame(grid2, a2_dir, resolution, args) |
|
|
|
|
|
def visualize_per_frame(grid, foldpath, resolution, args=None): |
|
grid = torch.nn.functional.interpolate(grid, size=(resolution, resolution), mode=args.mode) |
|
|
|
|
|
|
|
imgs = grid.cpu().numpy() |
|
|
|
n, _, _, _ = grid.shape |
|
for ii in range(n): |
|
r = np.uint8(imgs[ii, 0, :, :]*255) |
|
g = np.uint8(imgs[ii, 1, :, :]*255) |
|
b = np.uint8(imgs[ii, 2, :, :]*255) |
|
img = cv2.merge([b, g, r]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv2.imwrite('{}/{}.png'.format(foldpath, ii), img) |
|
return |
|
|
|
def cal(input, points): |
|
reference_point_3d = np.array(input) |
|
distances = np.linalg.norm(points - reference_point_3d, axis=1) |
|
closest_index = np.argmin(distances) |
|
closest_point = points[closest_index] |
|
return [closest_point[0], closest_point[1], closest_point[2]] |