File size: 5,887 Bytes
b1d950f
 
6ac1aaf
 
 
 
 
 
 
 
 
 
a0684ce
8a31bb3
37bff96
17dc0c3
37bff96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173c22a
00db828
ae51641
895508a
00db828
 
 
ae51641
 
c941610
37bff96
f75061a
8a31bb3
 
 
c9f1e4a
00db828
 
 
 
 
8a51f4e
c941610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f75061a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37bff96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import subprocess

import matplotlib.pyplot as plt
import torch
import torchvision.transforms as T
import gradio as gr
from pytorch_lightning import seed_everything
import os
import requests
import csv
import spaces


def plot_feats(image, lr, hr):
    from featup.util import pca, remove_axes
    assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
    seed_everything(0)
    [lr_feats_pca, hr_feats_pca], _ = pca(
        [lr.unsqueeze(0), hr.unsqueeze(0)], dim=9)
    fig, ax = plt.subplots(3, 3, figsize=(15, 15))
    ax[0, 0].imshow(image.permute(1, 2, 0).detach().cpu())
    ax[1, 0].imshow(image.permute(1, 2, 0).detach().cpu())
    ax[2, 0].imshow(image.permute(1, 2, 0).detach().cpu())

    ax[0, 0].set_title("Image", fontsize=22)
    ax[0, 1].set_title("Original", fontsize=22)
    ax[0, 2].set_title("Upsampled Features", fontsize=22)

    ax[0, 1].imshow(lr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())
    ax[0, 0].set_ylabel("PCA Components 1-3", fontsize=22)
    ax[0, 2].imshow(hr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())

    ax[1, 1].imshow(lr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())
    ax[1, 0].set_ylabel("PCA Components 4-6", fontsize=22)
    ax[1, 2].imshow(hr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())

    ax[2, 1].imshow(lr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())
    ax[2, 0].set_ylabel("PCA Components 7-9", fontsize=22)
    ax[2, 2].imshow(hr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())

    remove_axes(ax)
    plt.tight_layout()
    plt.close(fig)  # Close plt to avoid additional empty plots
    return fig


def download_image(url, save_path):
    response = requests.get(url)
    with open(save_path, 'wb') as file:
        file.write(response.content)


base_url = "https://marhamilresearch4.blob.core.windows.net/feature-upsampling-public/sample_images/"
sample_images_urls = {
    "skate.jpg": base_url + "skate.jpg",
    "car.jpg": base_url + "car.jpg",
    "plant.png": base_url + "plant.png",
}

sample_images_dir = "/tmp/sample_images"

# Ensure the directory for sample images exists
os.makedirs(sample_images_dir, exist_ok=True)

# Download each sample image
for filename, url in sample_images_urls.items():
    save_path = os.path.join(sample_images_dir, filename)
    # Download the image if it doesn't already exist
    if not os.path.exists(save_path):
        print(f"Downloading {filename}...")
        download_image(url, save_path)
    else:
        print(f"{filename} already exists. Skipping download.")

os.environ['TORCH_HOME'] = '/tmp/.cache'
os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'
csv.field_size_limit(100000000)
options = ['dino16', 'vit', 'dinov2', 'clip', 'resnet50']

image_input = gr.Image(label="Choose an image to featurize",
                       height=480,
                       type="pil",
                       image_mode='RGB',
                       sources=['upload', 'webcam', 'clipboard']
                       )
model_option = gr.Radio(options, value="dino16",
                        label='Choose a backbone to upsample')


def find_nvcc():
    try:
        result = subprocess.check_output('find / -name "nvcc" 2>/dev/null', shell=True, text=True)
        return result.strip()
    except subprocess.CalledProcessError as e:
        print(f"Error occurred: {e}")
        return None

@spaces.GPU(duration=120)
def upsample_features(image, model_option):
    with torch.no_grad():
        from setuptools import setup, find_packages
        from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CppExtension

        print(subprocess.check_output(['ls', '/usr/local/cuda*']).decode())
        nvcc_path = find_nvcc()
        if nvcc_path:
            print(f"CUDA 'nvcc' found at: {nvcc_path}")
        else:
            print("CUDA 'nvcc' not found.")

        setup(
            name='featup',
            version='0.1.2',
            packages=find_packages(),
            ext_modules=[
                CUDAExtension(
                    'adaptive_conv_cuda_impl',
                    [
                        'featup/adaptive_conv_cuda/adaptive_conv_cuda.cpp',
                        'featup/adaptive_conv_cuda/adaptive_conv_kernel.cu',
                    ]),
                CppExtension(
                    'adaptive_conv_cpp_impl',
                    ['featup/adaptive_conv_cuda/adaptive_conv.cpp'],
                    undef_macros=["NDEBUG"]),
            ],
            cmdclass={
                'build_ext': BuildExtension
            }
        )

        from featup.util import norm, unnorm
        models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}

        # Image preprocessing
        input_size = 224
        transform = T.Compose([
            T.Resize(input_size),
            T.CenterCrop((input_size, input_size)),
            T.ToTensor(),
            norm
        ])
        image_tensor = transform(image).unsqueeze(0).cuda()

        # Load the selected model
        upsampler = models[model_option].cuda()
        hr_feats = upsampler(image_tensor)
        lr_feats = upsampler.model(image_tensor)
        upsampler.cpu()

        return plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])


demo = gr.Interface(fn=upsample_features,
                    inputs=[image_input, model_option],
                    outputs="plot",
                    title="Feature Upsampling Demo",
                    description="This demo allows you to upsample features of an image using selected models.",
                    examples=[
                        ["/tmp/sample_images/skate.jpg", "dino16"],
                        ["/tmp/sample_images/car.jpg", "dinov2"],
                        ["/tmp/sample_images/plant.png", "dino16"],
                    ]
                    )

demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)