Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
tokenizer = AutoTokenizer.from_pretrained("ahmadmac/Pretrained-GPT2") | |
model = AutoModelForCausalLM.from_pretrained("ahmadmac/Pretrained-GPT2") | |
def generate_text(prompt, max_length=50, num_return_sequences=1, temperature=0.7): | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
output = model.generate( | |
input_ids, | |
max_length=max_length, | |
num_return_sequences=num_return_sequences, | |
temperature=0.7 | |
) | |
return tokenizer.decode(output[0], skip_special_tokens=True) | |
def main(): | |
st.title("Text Generator") | |
prompt = st.text_input("Enter your prompt:") | |
if st.button("Generate"): | |
generated_text = generate_text(prompt) | |
st.text_area("Generated Text:", generated_text) | |
if __name__ == "__main__": | |
main() |