File size: 7,729 Bytes
9d3c2b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from typing import Union, List

import PIL
from PIL import Image

import numpy as np
from tqdm.auto import tqdm
import torch
import torchvision
from torchvision.transforms import ToPILImage
from einops import repeat
from diffusers import AutoencoderKLCogVideoX
from diffusers import CogVideoXDDIMScheduler

from .model.dit import DiffusionTransformer3D
from .model.text_embedders import T5TextEmbedder


@torch.no_grad()
def predict_x_0(noise_scheduler, model_output, timesteps, sample, device):
    init_alpha_device = noise_scheduler.alphas_cumprod.device
    alphas = noise_scheduler.alphas_cumprod.to(device)

    alpha_prod_t = alphas[timesteps][:, None, None, None]
    beta_prod_t = 1 - alpha_prod_t
    
    pred_original_sample = (alpha_prod_t ** 0.5) * sample - (beta_prod_t ** 0.5) * model_output
    noise_scheduler.alphas_cumprod.to(init_alpha_device)
    return pred_original_sample


@torch.no_grad()
def get_velocity(
    model, x, t, text_embed, visual_cu_seqlens, text_cu_seqlens,
    num_goups=(1, 1, 1), scale_factor=(1., 1., 1.)
):
    pred_velocity = model(x, text_embed, t, visual_cu_seqlens, text_cu_seqlens, num_goups, scale_factor)
    
    return pred_velocity

    
@torch.no_grad()
def diffusion_generate_renoise(
    model, noise_scheduler, shape, device, num_steps, text_embed, visual_cu_seqlens, text_cu_seqlens,
    num_goups=(1, 1, 1), scale_factor=(1., 1., 1.), progress=False, seed=6554
):
    generator = torch.Generator()
    if seed is not None:
        generator.manual_seed(seed)
    
    img = torch.randn(*shape, generator=generator).to(torch.bfloat16).to(device)
    noise_scheduler.set_timesteps(num_steps, device=device)
    
    timesteps = noise_scheduler.timesteps
    if progress:
        timesteps = tqdm(timesteps)
    for time in timesteps:
        model_time = time.unsqueeze(0).repeat(visual_cu_seqlens.shape[0] - 1)
        noise = torch.randn(img.shape, generator=generator).to(torch.bfloat16).to(device)
        img = noise_scheduler.add_noise(img, noise, time)

        pred_velocity = get_velocity(
            model, img.to(torch.bfloat16), model_time, 
            text_embed.to(torch.bfloat16), visual_cu_seqlens, 
            text_cu_seqlens, num_goups, scale_factor
        )
        
        img = predict_x_0(noise_scheduler=noise_scheduler, model_output=pred_velocity.to(device), timesteps=model_time.to(device), sample=img.to(device), device=device)

    return img


class Kandinsky4T2VPipeline:
    def __init__(
            self,
            device_map: Union[str, torch.device, dict], # {"dit": cuda:0, "vae": cuda:1, "text_embedder": cuda:1 }
            dit: DiffusionTransformer3D,
            text_embedder: T5TextEmbedder,
            vae: AutoencoderKLCogVideoX,
            noise_scheduler: CogVideoXDDIMScheduler, # TODO base class
            resolution: int = 512,
            local_dit_rank=0,
            world_size=1,
    ):
        if resolution not in [512]:
            raise ValueError("Resolution can be only 512")

        self.dit = dit
        self.noise_scheduler = noise_scheduler
        self.text_embedder = text_embedder
        self.vae = vae
            
        self.resolution = resolution

        self.device_map = device_map
        self.local_dit_rank = local_dit_rank
        self.world_size = world_size
            

        self.RESOLUTIONS = {
            512: [(512, 512), (352, 736), (736, 352), (384, 672), (672, 384), (480, 544), (544, 480)],
        }


    def __call__(
            self,
            text: str,
            save_path: str = "./test.mp4",
            bs: int = 1,
            time_length: int = 12, # time in seconds 0 if you want generate image
            width: int = 512,
            height: int = 512,
            seed: int = None,
            return_frames: bool = False
    ):
        num_steps = 4

        # SEED 
        if seed is None:
            if self.local_dit_rank == 0:
                seed = torch.randint(2 ** 63 - 1, (1,)).to(self.local_dit_rank)
            else:
                seed = torch.empty((1,), dtype=torch.int64).to(self.local_dit_rank)
                
            if self.world_size > 1:
                torch.distributed.broadcast(seed, 0)
                
            seed = seed.item()

        assert bs == 1
        
        if self.resolution != 512:
            raise NotImplementedError(f"Only 512 resolution is available for now")  
                    
        if (height, width) not in self.RESOLUTIONS[self.resolution]:
            raise ValueError(f"Wrong height, width pair. Available (height, width) are: {self.RESOLUTIONS[self.resolution]}")

        if num_steps != 4:
            raise NotImplementedError(f"In the distilled version number of steps have to be strictly equal to 4")

        # PREPARATION
        num_frames = 1 if time_length == 0 else time_length * 8 // 4 + 1

        num_groups = (1, 1, 1) if self.resolution == 512 else (1, 2, 2) 
        scale_factor = (1., 1., 1.) if self.resolution == 512 else (1., 2., 2.) 
        
        # TEXT EMBEDDER
        if self.local_dit_rank == 0:
            with torch.no_grad():
                text_embed = self.text_embedder(text).squeeze(0).to(self.local_dit_rank, dtype=torch.bfloat16)
        else:
            text_embed = torch.empty(224, 4096, dtype=torch.bfloat16).to(self.local_dit_rank)

        
        if self.world_size > 1:
            torch.distributed.broadcast(text_embed, 0)

        torch.cuda.empty_cache()
        
        visual_cu_seqlens = num_frames * torch.arange(bs + 1, dtype=torch.int32, device=self.device_map["dit"])
        text_cu_seqlens = text_embed.shape[0] * torch.arange(bs + 1, dtype=torch.int32, device=self.device_map["dit"])
        bs_text_embed = text_embed.repeat(bs, 1).to(self.device_map["dit"])
        shape = (bs * num_frames, height // 8, width // 8, 16) 

        # DIT
        with torch.no_grad():
            with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
                images = diffusion_generate_renoise(
                    self.dit, self.noise_scheduler, shape, self.device_map["dit"], 
                    num_steps, bs_text_embed, visual_cu_seqlens, text_cu_seqlens, 
                    num_groups, scale_factor, progress=True, seed=seed,
                )
                    
        torch.cuda.empty_cache()

        # VAE
        if self.local_dit_rank == 0:
            self.vae.num_latent_frames_batch_size = 1 if time_length == 0 else 2
            with torch.no_grad():
                images = 1 / self.vae.config.scaling_factor * images.to(device=self.device_map["vae"], dtype=torch.bfloat16)
                images = images.permute(0, 3, 1, 2) if time_length == 0 else images.permute(3, 0, 1, 2)
                images = self.vae.decode(images.unsqueeze(2 if time_length == 0 else 0)).sample.float()
                images = torch.clip((images + 1.) / 2., 0., 1.)
                
        torch.cuda.empty_cache()

        if self.local_dit_rank == 0:
            # RESULTS
            if time_length == 0:
                return_images = []
                for i, image in enumerate(images.squeeze(2).cpu()):
                    return_images.append(ToPILImage()(image))
                return return_images  
            else:
                if return_frames:
                    return_images = []
                    for i, image in enumerate(images.squeeze(0).float().permute(1, 0, 2, 3).cpu()):
                        return_images.append(ToPILImage()(image))
                    return return_images
                else:  
                    torchvision.io.write_video(save_path, 255. * images.squeeze(0).float().permute(1, 2, 3, 0).cpu().numpy(), fps=8, options = {"crf": "5"})