Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,097 Bytes
9d3c2b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import math
import torch
from torch import nn
import torch.nn.functional as F
from diffusers import CogVideoXDDIMScheduler
from .nn import TimeEmbeddings, TextEmbeddings, VisualEmbeddings, RoPE3D, Modulation, MultiheadSelfAttention, MultiheadSelfAttentionTP, FeedForward, OutLayer
from .utils import exist
from torch.distributed.tensor.parallel import (
ColwiseParallel,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
SequenceParallel,
parallelize_module,
)
from torch.distributed._tensor import Replicate, Shard
def parallelize(model, tp_mesh):
if tp_mesh.size() > 1:
plan = {
"in_layer":ColwiseParallel(),
"out_layer": RowwiseParallel(
output_layouts=Replicate(),
)
}
parallelize_module(model.time_embeddings, tp_mesh, plan)
plan = {
"in_layer": ColwiseParallel(output_layouts=Replicate(),)
}
parallelize_module(model.text_embeddings, tp_mesh, plan)
parallelize_module(model.visual_embeddings, tp_mesh, plan)
for i, doubled_transformer_block in enumerate(model.transformer_blocks):
for j, transformer_block in enumerate(doubled_transformer_block):
transformer_block.self_attention = MultiheadSelfAttentionTP(transformer_block.self_attention)
plan = {
#text modulation
"text_modulation": PrepareModuleInput(
input_layouts=(None, None),
desired_input_layouts=(Replicate(), None),
),
"text_modulation.out_layer": ColwiseParallel(output_layouts=Replicate(),),
#visual modulation
"visual_modulation": PrepareModuleInput(
input_layouts=(None, None),
desired_input_layouts=(Replicate(), None),
),
"visual_modulation.out_layer": ColwiseParallel(output_layouts=Replicate(), use_local_output=True),
#self_attention_norm
"self_attention_norm": SequenceParallel(sequence_dim=0, use_local_output=True), # TODO надо ли вообще это??? если у нас смешанный ввод нескольких видосом может быть
#self_attention
"self_attention.to_query": ColwiseParallel(
input_layouts=Replicate(),
),
"self_attention.to_key": ColwiseParallel(
input_layouts=Replicate(),
),
"self_attention.to_value": ColwiseParallel(
input_layouts=Replicate(),
),
"self_attention.query_norm": SequenceParallel(sequence_dim=0, use_local_output=True),
"self_attention.key_norm": SequenceParallel(sequence_dim=0, use_local_output=True),
"self_attention.output_layer": RowwiseParallel(
# input_layouts=(Shard(0), ),
output_layouts=Replicate(),
),
#feed_forward_norm
"feed_forward_norm": SequenceParallel(sequence_dim=0, use_local_output=True),
#feed_forward
"feed_forward.in_layer": ColwiseParallel(),
"feed_forward.out_layer": RowwiseParallel(),
}
self_attn = transformer_block.self_attention
self_attn.num_heads = self_attn.num_heads // tp_mesh.size()
parallelize_module(transformer_block, tp_mesh, plan)
plan = {
"modulation_out":ColwiseParallel(output_layouts=Replicate(),),
"out_layer": ColwiseParallel(output_layouts=Replicate(),),
}
parallelize_module(model.out_layer, tp_mesh, plan)
plan={
"time_embeddings": PrepareModuleInput(desired_input_layouts=Replicate(),),
"text_embeddings": PrepareModuleInput(desired_input_layouts=Replicate(),),
"visual_embeddings": PrepareModuleInput(desired_input_layouts=Replicate(),),
"out_layer": PrepareModuleInput(
input_layouts=(None, None, None, None),
desired_input_layouts=(Replicate(), Replicate(), Replicate(), None)),
}
parallelize_module(model, tp_mesh, {})
return model
class TransformerBlock(nn.Module):
def __init__(self, model_dim, time_dim, ff_dim, head_dim=64):
super().__init__()
self.visual_modulation = Modulation(time_dim, model_dim)
self.text_modulation = Modulation(time_dim, model_dim)
self.self_attention_norm = nn.LayerNorm(model_dim, elementwise_affine=True)
self.self_attention = MultiheadSelfAttention(model_dim, head_dim)
self.feed_forward_norm = nn.LayerNorm(model_dim, elementwise_affine=True)
self.feed_forward = FeedForward(model_dim, ff_dim)
def forward(self, visual_embed, text_embed, time_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type):
visual_shape = visual_embed.shape[:-1]
visual_self_attn_params, visual_ff_params = self.visual_modulation(time_embed, visual_cu_seqlens)
text_self_attn_params, text_ff_params = self.text_modulation(time_embed, text_cu_seqlens)
visual_shift, visual_scale, visual_gate = torch.chunk(visual_self_attn_params, 3, dim=-1)
text_shift, text_scale, text_gate = torch.chunk(text_self_attn_params, 3, dim=-1)
visual_out = self.self_attention_norm(visual_embed) * (visual_scale[:, None, None] + 1.) + visual_shift[:, None, None]
text_out = self.self_attention_norm(text_embed) * (text_scale + 1.) + text_shift
visual_out, text_out = self.self_attention(visual_out, text_out, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type)
visual_embed = visual_embed + visual_gate[:, None, None] * visual_out
text_embed = text_embed + text_gate * text_out
visual_shift, visual_scale, visual_gate = torch.chunk(visual_ff_params, 3, dim=-1)
visual_out = self.feed_forward_norm(visual_embed) * (visual_scale[:, None, None] + 1.) + visual_shift[:, None, None]
visual_embed = visual_embed + visual_gate[:, None, None] * self.feed_forward(visual_out)
text_shift, text_scale, text_gate = torch.chunk(text_ff_params, 3, dim=-1)
text_out = self.feed_forward_norm(text_embed) * (text_scale + 1.) + text_shift
text_embed = text_embed + text_gate * self.feed_forward(text_out)
return visual_embed, text_embed
class DiffusionTransformer3D(nn.Module):
def __init__(
self,
in_visual_dim=4,
in_text_dim=2048,
time_dim=512,
out_visual_dim=4,
patch_size=(1, 2, 2),
model_dim=2048,
ff_dim=5120,
num_blocks=8,
axes_dims=(16, 24, 24),
):
super().__init__()
head_dim = sum(axes_dims)
self.in_visual_dim = in_visual_dim
self.model_dim = model_dim
self.num_blocks = num_blocks
self.time_embeddings = TimeEmbeddings(model_dim, time_dim)
self.text_embeddings = TextEmbeddings(in_text_dim, model_dim)
self.visual_embeddings = VisualEmbeddings(in_visual_dim, model_dim, patch_size)
self.rope_embeddings = RoPE3D(axes_dims)
self.transformer_blocks = nn.ModuleList([
nn.ModuleList([
TransformerBlock(model_dim, time_dim, ff_dim, head_dim),
TransformerBlock(model_dim, time_dim, ff_dim, head_dim),
]) for _ in range(num_blocks)
])
self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size)
def forward(self, x, text_embed, time, visual_cu_seqlens, text_cu_seqlens, num_groups=(1, 1, 1), scale_factor=(1., 1., 1.)):
time_embed = self.time_embeddings(time)
text_embed = self.text_embeddings(text_embed)
visual_embed = self.visual_embeddings(x)
rope = self.rope_embeddings(visual_embed, visual_cu_seqlens, scale_factor)
for i, (local_attention, global_attention) in enumerate(self.transformer_blocks):
visual_embed, text_embed = local_attention(
visual_embed, text_embed, time_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, 'local'
)
visual_embed, text_embed = global_attention(
visual_embed, text_embed, time_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, 'global'
)
return self.out_layer(visual_embed, text_embed, time_embed, visual_cu_seqlens)
def get_dit(conf):
dit = DiffusionTransformer3D(**conf.params)
state_dict = torch.load(conf.checkpoint_path, weights_only=True, map_location=torch.device('cpu'))
dit.load_state_dict(state_dict, strict=False)
return dit
|