Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
def exist(item): | |
return item is not None | |
def freeze(model): | |
for p in model.parameters(): | |
p.requires_grad = False | |
return model | |
def get_freqs(dim, max_period=10000.): | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=dim, dtype=torch.float32) / dim | |
) | |
return freqs | |
def get_group_sizes(shape, num_groups): | |
return [*map(lambda x: x[0] // x[1], zip(shape, num_groups))] | |
def rescale_group_rope(num_groups, scale_factor, rescale_factor): | |
num_groups = [*map(lambda x: int(x[0] / x[1]), zip(num_groups, rescale_factor))] | |
scale_factor = [*map(lambda x: x[0] / x[1], zip(scale_factor, rescale_factor))] | |
return num_groups, scale_factor | |
def cat_interleave(visual_query_key_value, text_query_key_value, visual_cu_seqlens, text_cu_seqlens): | |
query_key_value = [] | |
for local_visual_query_key_value, local_text_query_key_value in zip( | |
torch.split(visual_query_key_value, torch.diff(visual_cu_seqlens).tolist(), dim=1), | |
torch.split(text_query_key_value, torch.diff(text_cu_seqlens).tolist(), dim=1) | |
): | |
query_key_value += [local_visual_query_key_value, local_text_query_key_value] | |
query_key_value = torch.cat(query_key_value, dim=1) | |
return query_key_value | |
def split_interleave(out, cu_seqlens, split_len): | |
visual_out, text_out = [], [] | |
for local_out in torch.split(out, torch.diff(cu_seqlens).tolist(), dim=1): | |
visual_out.append(local_out[:, :-split_len]) | |
text_out.append(local_out[0, -split_len:]) | |
visual_out, text_out = torch.cat(visual_out, dim=1), torch.cat(text_out, dim=0) | |
return visual_out, text_out | |
def local_patching(x, shape, group_size, dim=0): | |
duration, height, width = shape | |
g1, g2, g3 = group_size | |
x = x.reshape(*x.shape[:dim], duration//g1, g1, height//g2, g2, width//g3, g3, *x.shape[dim+3:]) | |
x = x.permute( | |
*range(len(x.shape[:dim])), | |
dim, dim+2, dim+4, dim+1, dim+3, dim+5, | |
*range(dim+6, len(x.shape)) | |
) | |
x = x.flatten(dim, dim+2).flatten(dim+1, dim+3) | |
return x | |
def local_merge(x, shape, group_size, dim=0): | |
duration, height, width = shape | |
g1, g2, g3 = group_size | |
x = x.reshape(*x.shape[:dim], duration//g1, height//g2, width//g3, g1, g2, g3, *x.shape[dim+2:]) | |
x = x.permute( | |
*range(len(x.shape[:dim])), | |
dim, dim+3, dim+1, dim+4, dim+2, dim+5, | |
*range(dim+6, len(x.shape)) | |
) | |
x = x.flatten(dim, dim+1).flatten(dim+1, dim+2).flatten(dim+2, dim+3) | |
return x | |
def global_patching(x, shape, group_size, dim=0): | |
latent_group_size = [axis // axis_group_size for axis, axis_group_size in zip(shape, group_size)] | |
x = local_patching(x, shape, latent_group_size, dim) | |
x = x.transpose(dim, dim+1) | |
return x | |
def global_merge(x, shape, group_size, dim=0): | |
latent_group_size = [axis // axis_group_size for axis, axis_group_size in zip(shape, group_size)] | |
x = x.transpose(dim, dim+1) | |
x = local_merge(x, shape, latent_group_size, dim) | |
return x | |
def to_1dimension(visual_embed, visual_cu_seqlens, visual_shape, num_groups, attention_type): | |
group_size = get_group_sizes(visual_shape, num_groups) | |
if attention_type == 'local': | |
visual_embed = local_patching(visual_embed, visual_shape, group_size, dim=0) | |
if attention_type == 'global': | |
visual_embed = global_patching(visual_embed, visual_shape, group_size, dim=0) | |
visual_cu_seqlens = visual_cu_seqlens * math.prod(group_size[1:]) | |
return visual_embed, visual_cu_seqlens | |
def to_3dimension(visual_embed, visual_shape, num_groups, attention_type): | |
group_size = get_group_sizes(visual_shape, num_groups) | |
if attention_type == 'local': | |
x = local_merge(visual_embed, visual_shape, group_size, dim=0) | |
if attention_type == 'global': | |
x = global_merge(visual_embed, visual_shape, group_size, dim=0) | |
return x | |