ai-forever's picture
add files
9d3c2b7
raw
history blame
3.93 kB
import math
import torch
def exist(item):
return item is not None
def freeze(model):
for p in model.parameters():
p.requires_grad = False
return model
def get_freqs(dim, max_period=10000.):
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=dim, dtype=torch.float32) / dim
)
return freqs
def get_group_sizes(shape, num_groups):
return [*map(lambda x: x[0] // x[1], zip(shape, num_groups))]
def rescale_group_rope(num_groups, scale_factor, rescale_factor):
num_groups = [*map(lambda x: int(x[0] / x[1]), zip(num_groups, rescale_factor))]
scale_factor = [*map(lambda x: x[0] / x[1], zip(scale_factor, rescale_factor))]
return num_groups, scale_factor
def cat_interleave(visual_query_key_value, text_query_key_value, visual_cu_seqlens, text_cu_seqlens):
query_key_value = []
for local_visual_query_key_value, local_text_query_key_value in zip(
torch.split(visual_query_key_value, torch.diff(visual_cu_seqlens).tolist(), dim=1),
torch.split(text_query_key_value, torch.diff(text_cu_seqlens).tolist(), dim=1)
):
query_key_value += [local_visual_query_key_value, local_text_query_key_value]
query_key_value = torch.cat(query_key_value, dim=1)
return query_key_value
def split_interleave(out, cu_seqlens, split_len):
visual_out, text_out = [], []
for local_out in torch.split(out, torch.diff(cu_seqlens).tolist(), dim=1):
visual_out.append(local_out[:, :-split_len])
text_out.append(local_out[0, -split_len:])
visual_out, text_out = torch.cat(visual_out, dim=1), torch.cat(text_out, dim=0)
return visual_out, text_out
def local_patching(x, shape, group_size, dim=0):
duration, height, width = shape
g1, g2, g3 = group_size
x = x.reshape(*x.shape[:dim], duration//g1, g1, height//g2, g2, width//g3, g3, *x.shape[dim+3:])
x = x.permute(
*range(len(x.shape[:dim])),
dim, dim+2, dim+4, dim+1, dim+3, dim+5,
*range(dim+6, len(x.shape))
)
x = x.flatten(dim, dim+2).flatten(dim+1, dim+3)
return x
def local_merge(x, shape, group_size, dim=0):
duration, height, width = shape
g1, g2, g3 = group_size
x = x.reshape(*x.shape[:dim], duration//g1, height//g2, width//g3, g1, g2, g3, *x.shape[dim+2:])
x = x.permute(
*range(len(x.shape[:dim])),
dim, dim+3, dim+1, dim+4, dim+2, dim+5,
*range(dim+6, len(x.shape))
)
x = x.flatten(dim, dim+1).flatten(dim+1, dim+2).flatten(dim+2, dim+3)
return x
def global_patching(x, shape, group_size, dim=0):
latent_group_size = [axis // axis_group_size for axis, axis_group_size in zip(shape, group_size)]
x = local_patching(x, shape, latent_group_size, dim)
x = x.transpose(dim, dim+1)
return x
def global_merge(x, shape, group_size, dim=0):
latent_group_size = [axis // axis_group_size for axis, axis_group_size in zip(shape, group_size)]
x = x.transpose(dim, dim+1)
x = local_merge(x, shape, latent_group_size, dim)
return x
def to_1dimension(visual_embed, visual_cu_seqlens, visual_shape, num_groups, attention_type):
group_size = get_group_sizes(visual_shape, num_groups)
if attention_type == 'local':
visual_embed = local_patching(visual_embed, visual_shape, group_size, dim=0)
if attention_type == 'global':
visual_embed = global_patching(visual_embed, visual_shape, group_size, dim=0)
visual_cu_seqlens = visual_cu_seqlens * math.prod(group_size[1:])
return visual_embed, visual_cu_seqlens
def to_3dimension(visual_embed, visual_shape, num_groups, attention_type):
group_size = get_group_sizes(visual_shape, num_groups)
if attention_type == 'local':
x = local_merge(visual_embed, visual_shape, group_size, dim=0)
if attention_type == 'global':
x = global_merge(visual_embed, visual_shape, group_size, dim=0)
return x