Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,94 @@
|
|
1 |
-
import base64
|
2 |
-
import io
|
3 |
-
from fastapi import FastAPI, UploadFile, File, HTTPException
|
4 |
-
import os
|
5 |
-
import shutil
|
6 |
-
from PIL import Image
|
7 |
-
from fastapi.responses import JSONResponse
|
8 |
-
from semantic_seg_model import segmentation_inference
|
9 |
-
from similarity_inference import similarity_inference
|
10 |
-
import json
|
11 |
-
from gradio_client import Client, file
|
12 |
-
|
13 |
-
app = FastAPI()
|
14 |
-
|
15 |
-
## Initialize the pipeline
|
16 |
-
input_images_dir = "image/"
|
17 |
-
temp_processing_dir = input_images_dir + "processed/"
|
18 |
-
|
19 |
-
# Define a function to handle the POST request at `imageAnalyzer`
|
20 |
-
@app.post("/imageAnalyzer")
|
21 |
-
def imageAnalyzer(image: UploadFile = File(...)):
|
22 |
-
"""
|
23 |
-
This function takes in an image filepath and will return the PolyHaven url addresses of the
|
24 |
-
top k materials similar to the wall, ceiling, and floor.
|
25 |
-
"""
|
26 |
-
try:
|
27 |
-
# load image
|
28 |
-
image_path = os.path.join(input_images_dir, image.filename)
|
29 |
-
with open(image_path, "wb") as buffer:
|
30 |
-
shutil.copyfileobj(image.file, buffer)
|
31 |
-
image = Image.open(image_path)
|
32 |
-
|
33 |
-
# segment into components
|
34 |
-
segmentation_inference(image, temp_processing_dir)
|
35 |
-
|
36 |
-
# identify similar materials for each component
|
37 |
-
matching_urls = similarity_inference(temp_processing_dir)
|
38 |
-
print(matching_urls)
|
39 |
-
|
40 |
-
# Return the urls in a JSON response
|
41 |
-
return matching_urls
|
42 |
-
|
43 |
-
except Exception as e:
|
44 |
-
print(str(e))
|
45 |
-
raise HTTPException(status_code=500, detail=str(e))
|
46 |
-
|
47 |
-
|
48 |
-
client = Client("MykolaL/StableDesign")
|
49 |
-
|
50 |
-
@app.post("/image-render")
|
51 |
-
def imageRender(prompt: str, image: UploadFile = File(...)):
|
52 |
-
"""
|
53 |
-
Makes a prediction using the "StableDesign" model hosted on a server.
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
The prediction result.
|
57 |
-
"""
|
58 |
-
try:
|
59 |
-
image_path = os.path.join(input_images_dir, image.filename)
|
60 |
-
with open(image_path, "wb") as buffer:
|
61 |
-
shutil.copyfileobj(image.file, buffer)
|
62 |
-
image = Image.open(image_path)
|
63 |
-
# Convert PIL image to the required format for the prediction model, if necessary
|
64 |
-
# This example assumes the model accepts PIL images directly
|
65 |
-
|
66 |
-
result = client.predict(
|
67 |
-
image=file(image_path),
|
68 |
-
text=prompt,
|
69 |
-
num_steps=50,
|
70 |
-
guidance_scale=10,
|
71 |
-
seed=1111664444,
|
72 |
-
strength=0.9,
|
73 |
-
a_prompt="interior design, 4K, high resolution, photorealistic",
|
74 |
-
n_prompt="window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner",
|
75 |
-
img_size=768,
|
76 |
-
api_name="/on_submit"
|
77 |
-
)
|
78 |
-
image_path = result
|
79 |
-
if not os.path.exists(image_path):
|
80 |
-
raise HTTPException(status_code=404, detail="Image not found")
|
81 |
-
|
82 |
-
# Open the image file and convert it to base64
|
83 |
-
with open(image_path, "rb") as img_file:
|
84 |
-
base64_str = base64.b64encode(img_file.read()).decode('utf-8')
|
85 |
-
|
86 |
-
return JSONResponse(content={"image": base64_str}, status_code=200)
|
87 |
-
except Exception as e:
|
88 |
-
print(str(e))
|
89 |
-
raise HTTPException(status_code=500, detail=str(e))
|
90 |
-
|
91 |
-
|
92 |
-
@app.get("/")
|
93 |
-
def test():
|
94 |
-
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
from PIL import Image
|
7 |
+
from fastapi.responses import JSONResponse
|
8 |
+
from semantic_seg_model import segmentation_inference
|
9 |
+
from similarity_inference import similarity_inference
|
10 |
+
import json
|
11 |
+
from gradio_client import Client, file
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
## Initialize the pipeline
|
16 |
+
input_images_dir = "image/"
|
17 |
+
temp_processing_dir = input_images_dir + "processed/"
|
18 |
+
|
19 |
+
# Define a function to handle the POST request at `imageAnalyzer`
|
20 |
+
@app.post("/imageAnalyzer")
|
21 |
+
def imageAnalyzer(image: UploadFile = File(...)):
|
22 |
+
"""
|
23 |
+
This function takes in an image filepath and will return the PolyHaven url addresses of the
|
24 |
+
top k materials similar to the wall, ceiling, and floor.
|
25 |
+
"""
|
26 |
+
try:
|
27 |
+
# load image
|
28 |
+
image_path = os.path.join(input_images_dir, image.filename)
|
29 |
+
with open(image_path, "wb") as buffer:
|
30 |
+
shutil.copyfileobj(image.file, buffer)
|
31 |
+
image = Image.open(image_path)
|
32 |
+
|
33 |
+
# segment into components
|
34 |
+
segmentation_inference(image, temp_processing_dir)
|
35 |
+
|
36 |
+
# identify similar materials for each component
|
37 |
+
matching_urls = similarity_inference(temp_processing_dir)
|
38 |
+
print(matching_urls)
|
39 |
+
|
40 |
+
# Return the urls in a JSON response
|
41 |
+
return matching_urls
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
print(str(e))
|
45 |
+
raise HTTPException(status_code=500, detail=str(e))
|
46 |
+
|
47 |
+
|
48 |
+
client = Client("MykolaL/StableDesign")
|
49 |
+
|
50 |
+
@app.post("/image-render")
|
51 |
+
def imageRender(prompt: str, image: UploadFile = File(...)):
|
52 |
+
"""
|
53 |
+
Makes a prediction using the "StableDesign" model hosted on a server.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
The prediction result.
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
image_path = os.path.join(input_images_dir, image.filename)
|
60 |
+
with open(image_path, "wb") as buffer:
|
61 |
+
shutil.copyfileobj(image.file, buffer)
|
62 |
+
image = Image.open(image_path)
|
63 |
+
# Convert PIL image to the required format for the prediction model, if necessary
|
64 |
+
# This example assumes the model accepts PIL images directly
|
65 |
+
|
66 |
+
result = client.predict(
|
67 |
+
image=file(image_path),
|
68 |
+
text=prompt,
|
69 |
+
num_steps=50,
|
70 |
+
guidance_scale=10,
|
71 |
+
seed=1111664444,
|
72 |
+
strength=0.9,
|
73 |
+
a_prompt="interior design, 4K, high resolution, photorealistic",
|
74 |
+
n_prompt="window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner",
|
75 |
+
img_size=768,
|
76 |
+
api_name="/on_submit"
|
77 |
+
)
|
78 |
+
image_path = result
|
79 |
+
if not os.path.exists(image_path):
|
80 |
+
raise HTTPException(status_code=404, detail="Image not found")
|
81 |
+
|
82 |
+
# Open the image file and convert it to base64
|
83 |
+
with open(image_path, "rb") as img_file:
|
84 |
+
base64_str = base64.b64encode(img_file.read()).decode('utf-8')
|
85 |
+
|
86 |
+
return JSONResponse(content={"image": base64_str}, status_code=200)
|
87 |
+
except Exception as e:
|
88 |
+
print(str(e))
|
89 |
+
raise HTTPException(status_code=500, detail=str(e))
|
90 |
+
|
91 |
+
|
92 |
+
# @app.get("/")
|
93 |
+
# def test():
|
94 |
+
# return {"Hello": "World"}
|