File size: 5,953 Bytes
04e62f7
 
 
 
 
 
 
 
 
 
 
 
 
8ccf6e8
04e62f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Thanks: https://huggingface.co/spaces/stabilityai/stable-diffusion-3-medium
import spaces
import os
import gradio as gr
import numpy as np
import random
import torch
from diffusers import StableDiffusion3Pipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

device = "cuda"
dtype = torch.float16

repo = "aipicasso/emi-3"
t2i = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.bfloat16, token=os.environ["TOKEN"]).to(device)

model = AutoModelForCausalLM.from_pretrained(
    "microsoft/Phi-3-mini-4k-instruct", 
    device_map="cuda", 
    torch_dtype=torch.bfloat16, 
    trust_remote_code=True, 
    token=os.environ["TOKEN"]
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", token=os.environ["TOKEN"])
upsampler = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)

generation_args = {
    "max_new_tokens": 226,
    "return_full_text": False,
    "temperature": 0.7,
    "do_sample": True,
    "top_p": 0.95
}

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1344

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
    messages = [
        {"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「クールなアニメ風の女の子」"},
        {"role": "assistant", "content": "An anime style illustration of a cool-looking teenage girl with an edgy, confident expression. She has piercing eyes, a slight smirk, and colorful hair that flows in the wind. "},
        {"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「実写風の女子高生」"},
        {"role": "assistant", "content": "A photorealistic image of a female high school student standing on a city street. She is wearing a traditional Japanese school uniform, consisting of a navy blue blazer, a white blouse, and a knee-length plaid skirt. "},
        {"role": "user", "content": f"次のプロンプトを想像を膨らませて英語に翻訳してください。「{prompt}」" },
    ]
    output = upsampler(messages, **generation_args)
    upsampled_prompt=output[0]['generated_text']
    print(upsampled_prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = t2i(
        prompt = upsampled_prompt, 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image, seed, upsampled_prompt

examples = [
    "美味しい肉",
    "馬に乗った宇宙飛行士",
    "アニメ風の美少女",
    "女子高生の写真",
    "寿司でできた家に入っているコーギー",
    "バナナとアボカドが戦っている様子"
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 580px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # 日本語が入力できる SD3.5 Large
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="プロンプト",
                show_label=False,
                max_lines=1,
                placeholder="作りたい画像の特徴を入力してください",
                container=False,
            )
            
            run_button = gr.Button("実行", scale=0)
        
        result = gr.Image(label="結果", show_label=False)
        generated_prompt = gr.Textbox(label="生成に使ったプロンプト", show_label=False, interactive=False)
        
        with gr.Accordion("詳細設定", open=False):
            
            negative_prompt = gr.Text(
                label="ネガティブプロンプト",
                max_lines=1,
                placeholder="画像から排除したい要素を入力してください",
            )
            
            seed = gr.Slider(
                label="乱数のシード",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="ランダム生成", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="横",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="縦",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="プロンプトの忠実さ",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=3.5,
                )
                
                num_inference_steps = gr.Slider(
                    label="推論回数",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )
    gr.on(
        triggers=[run_button.click, prompt.submit, negative_prompt.submit],
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed, generated_prompt]
    )

demo.launch()