File size: 6,413 Bytes
04e62f7
 
 
 
 
 
 
 
 
 
 
 
 
8ccf6e8
04e62f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a37af71
9ce97bf
a37af71
 
04e62f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a37af71
 
04e62f7
 
 
 
 
 
 
 
 
 
 
 
 
a37af71
04e62f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Thanks: https://huggingface.co/spaces/stabilityai/stable-diffusion-3-medium
import spaces
import os
import gradio as gr
import numpy as np
import random
import torch
from diffusers import StableDiffusion3Pipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

device = "cuda"
dtype = torch.float16

repo = "aipicasso/emi-3"
t2i = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.bfloat16, token=os.environ["TOKEN"]).to(device)

model = AutoModelForCausalLM.from_pretrained(
    "microsoft/Phi-3-mini-4k-instruct", 
    device_map="cuda", 
    torch_dtype=torch.bfloat16, 
    trust_remote_code=True, 
    token=os.environ["TOKEN"]
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", token=os.environ["TOKEN"])
upsampler = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)

generation_args = {
    "max_new_tokens": 226,
    "return_full_text": False,
    "temperature": 0.7,
    "do_sample": True,
    "top_p": 0.95
}

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1344

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
    messages = [
        {"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「目も髪もカラフルに染まっている美少女で、虹のような背景に\"Emi 3\"と白い文字で書かれている」"},
        {"role": "assistant", "content": " 1girl, anime style, looking at viewer, serene expression, gentle smile, multicolored hair, rainbow gradient hair, wavy long hair, heterochromia, purple left eye, blue right eye, pastel color scheme, magical girl aesthetic, white text overlay \"Emi 3\", centered text, modern typography, ethereal lighting, soft glow, fantasy atmosphere, rainbow gradient background, dreamy atmosphere, sparkles, light particles, magical effects, depth of field, bokeh effect"},
        {"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「美しい花と美少女」"},
        {"role": "assistant", "content": "In a sunlit garden on a spring afternoon, 1girl stands amidst blooming flowers. Gentle sunlight filters through cherry blossoms, illuminating her graceful figure. Her long hair sways in the breeze, and her white dress flows with the spring wind. Roses bloom abundantly around her, their fragrance filling the air. Her clear eyes and gentle smile create a captivating presence. The scene is a painting-like vision, with her surrounded by pastel-colored flowers in full bloom."},
        {"role": "user", "content": f"次のプロンプトを想像を膨らませて英語に翻訳してください。「{prompt}」" },
    ]
    output = upsampler(messages, **generation_args)
    upsampled_prompt=output[0]['generated_text']
    print(upsampled_prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = t2i(
        prompt = upsampled_prompt, 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image, seed, upsampled_prompt

examples = [
    "炎の魔法使いの少女",
    "雷の魔法使いの少女",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 580px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # 日本語が入力できる Emi 3
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="プロンプト",
                show_label=False,
                max_lines=1,
                placeholder="作りたい画像の特徴を入力してください",
                container=False,
            )
            
            run_button = gr.Button("実行", scale=0)
        
        result = gr.Image(label="結果", show_label=False)
        generated_prompt = gr.Textbox(label="生成に使ったプロンプト", show_label=False, interactive=False)
        
        with gr.Accordion("詳細設定", open=False):
            
            negative_prompt = gr.Text(
                label="ネガティブプロンプト",
                max_lines=1,
                placeholder="画像から排除したい要素を入力してください",
            )
            
            seed = gr.Slider(
                label="乱数のシード",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="ランダム生成", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="横",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="縦",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="プロンプトの忠実さ",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=3.5,
                )
                
                num_inference_steps = gr.Slider(
                    label="推論回数",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )
    gr.on(
        triggers=[run_button.click, prompt.submit, negative_prompt.submit],
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed, generated_prompt]
    )

demo.launch()