Spaces:
aiqcamp
/
Running on Zero

File size: 8,002 Bytes
967924e
dbac20f
 
 
 
 
 
c4dd2de
d2a875e
 
 
c4dd2de
d2a875e
c4dd2de
 
 
 
 
dbac20f
 
 
 
 
 
 
 
d2a875e
dbac20f
 
 
d2a875e
dbac20f
 
d2a875e
dbac20f
 
 
d2a875e
dbac20f
 
 
 
 
 
d2a875e
 
1354a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2a875e
1354a37
 
 
 
 
 
d2a875e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
 
 
 
 
 
 
 
 
 
 
 
164c335
 
dbac20f
 
 
 
 
 
d2a875e
 
 
 
 
 
 
 
 
 
dbac20f
77e7170
dbac20f
 
 
d2a875e
 
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac63db
 
 
 
 
 
dbac20f
 
627e0b8
dbac20f
 
 
d2a875e
 
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac63db
dbac20f
 
 
d2a875e
 
 
 
 
 
 
dbac20f
 
 
 
d2a875e
 
 
 
 
 
 
dbac20f
d2a875e
 
 
dbac20f
 
 
 
d2a875e
 
 
 
 
 
dbac20f
d2a875e
 
dbac20f
 
d2a875e
dbac20f
d2a875e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import spaces
import logging
from datetime import datetime
from pathlib import Path
import gradio as gr
import torch
import torchaudio
import os
from transformers import pipeline
from pixabay import Image, Video
import tempfile

# ๊ธฐ๋ณธ ์„ค์ •
try:
    import mmaudio
except ImportError:
    os.system("pip install -e .")
    import mmaudio

from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
                                setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils

# CUDA ์„ค์ •
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

# ๋กœ๊น… ์„ค์ •
log = logging.getLogger()

# ์žฅ์น˜ ๋ฐ ๋ฐ์ดํ„ฐ ํƒ€์ž… ์„ค์ •
device = 'cuda'
dtype = torch.bfloat16

# ๋ชจ๋ธ ์„ค์ •
model: ModelConfig = all_model_cfg['large_44k_v2']
model.download_if_needed()
output_dir = Path('./output/gradio')

setup_eval_logging()

# ๋ฒˆ์—ญ๊ธฐ ๋ฐ Pixabay API ์„ค์ •
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")



import requests

def search_pixabay_videos(query, api_key):
    base_url = "https://pixabay.com/api/videos/"
    params = {
        "key": api_key,
        "q": query,
        "per_page": 80
    }
    
    response = requests.get(base_url, params=params)
    if response.status_code == 200:
        data = response.json()
        return [video['videos']['large']['url'] for video in data.get('hits', [])]
    return []

# ๋ฉ”์ธ ์ฝ”๋“œ์—์„œ pixabay ๊ด€๋ จ ๋ถ€๋ถ„ ์ˆ˜์ •
PIXABAY_API_KEY = "33492762-a28a596ec4f286f84cd328b17"

def search_videos(query):
    query = translate_prompt(query)
    return search_pixabay_videos(query, PIXABAY_API_KEY)



# CSS ์Šคํƒ€์ผ ์ •์˜
custom_css = """
.gradio-container {
    background: linear-gradient(45deg, #1a1a1a, #2a2a2a);
    border-radius: 15px;
    box-shadow: 0 8px 32px rgba(0,0,0,0.3);
}

.input-container, .output-container {
    background: rgba(255,255,255,0.1);
    backdrop-filter: blur(10px);
    border-radius: 10px;
    padding: 20px;
    transform-style: preserve-3d;
    transition: transform 0.3s ease;
}

.input-container:hover {
    transform: translateZ(20px);
}

.gallery-item {
    transition: transform 0.3s ease;
    border-radius: 8px;
    overflow: hidden;
}

.gallery-item:hover {
    transform: scale(1.05);
    box-shadow: 0 4px 15px rgba(0,0,0,0.2);
}

.tabs {
    background: rgba(255,255,255,0.05);
    border-radius: 10px;
    padding: 10px;
}

button {
    background: linear-gradient(45deg, #4a90e2, #357abd);
    border: none;
    border-radius: 5px;
    transition: all 0.3s ease;
}

button:hover {
    transform: translateY(-2px);
    box-shadow: 0 4px 15px rgba(74,144,226,0.3);
}
"""

def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
    seq_cfg = model.seq_cfg

    net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
    net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
    log.info(f'Loaded weights from {model.model_path}')

    feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
                                  synchformer_ckpt=model.synchformer_ckpt,
                                  enable_conditions=True,
                                  mode=model.mode,
                                  bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
                                  need_vae_encoder=False)
    feature_utils = feature_utils.to(device, dtype).eval()

    return net, feature_utils, seq_cfg

net, feature_utils, seq_cfg = get_model()

def translate_prompt(text):
    if text and any(ord(char) >= 0x3131 and ord(char) <= 0xD7A3 for char in text):
        translation = translator(text)[0]['translation_text']
        return translation
    return text

def search_videos(query):
    query = translate_prompt(query)
    videos = pixabay_video.search(q=query, per_page=80)
    return [video.video_large for video in videos['hits']]

@spaces.GPU
@torch.inference_mode()
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
                   cfg_strength: float, duration: float):
    prompt = translate_prompt(prompt)
    negative_prompt = translate_prompt(negative_prompt)

    rng = torch.Generator(device=device)
    rng.manual_seed(seed)
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    clip_frames, sync_frames, duration = load_video(video, duration)
    clip_frames = clip_frames.unsqueeze(0)
    sync_frames = sync_frames.unsqueeze(0)
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

    audios = generate(clip_frames,
                      sync_frames, [prompt],
                      negative_text=[negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=cfg_strength)
    audio = audios.float().cpu()[0]

    video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
    make_video(video,
               video_save_path,
               audio,
               sampling_rate=seq_cfg.sampling_rate,
               duration_sec=seq_cfg.duration)
    return video_save_path

@spaces.GPU
@torch.inference_mode()
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
                  duration: float):
    prompt = translate_prompt(prompt)
    negative_prompt = translate_prompt(negative_prompt)

    rng = torch.Generator(device=device)
    rng.manual_seed(seed)
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    clip_frames = sync_frames = None
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

    audios = generate(clip_frames,
                      sync_frames, [prompt],
                      negative_text=[negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=cfg_strength)
    audio = audios.float().cpu()[0]

    audio_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.flac').name
    torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
    return audio_save_path

# ์ธํ„ฐํŽ˜์ด์Šค ์ •์˜
video_search_tab = gr.Interface(
    fn=search_videos,
    inputs=gr.Textbox(label="๊ฒ€์ƒ‰์–ด ์ž…๋ ฅ"),
    outputs=gr.Gallery(label="๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ", columns=4, rows=20),
    css=custom_css
)

video_to_audio_tab = gr.Interface(
    fn=video_to_audio,
    inputs=[
        gr.Video(label="๋น„๋””์˜ค"),
        gr.Textbox(label="ํ”„๋กฌํ”„ํŠธ"),
        gr.Textbox(label="๋„ค๊ฑฐํ‹ฐ๋ธŒ ํ”„๋กฌํ”„ํŠธ", value="music"),
        gr.Number(label="์‹œ๋“œ", value=0),
        gr.Number(label="์Šคํ… ์ˆ˜", value=25),
        gr.Number(label="๊ฐ€์ด๋“œ ๊ฐ•๋„", value=4.5),
        gr.Number(label="๊ธธ์ด(์ดˆ)", value=8),
    ],
    outputs="playable_video",
    css=custom_css
)

text_to_audio_tab = gr.Interface(
    fn=text_to_audio,
    inputs=[
        gr.Textbox(label="ํ”„๋กฌํ”„ํŠธ"),
        gr.Textbox(label="๋„ค๊ฑฐํ‹ฐ๋ธŒ ํ”„๋กฌํ”„ํŠธ"),
        gr.Number(label="์‹œ๋“œ", value=0),
        gr.Number(label="์Šคํ… ์ˆ˜", value=25),
        gr.Number(label="๊ฐ€์ด๋“œ ๊ฐ•๋„", value=4.5),
        gr.Number(label="๊ธธ์ด(์ดˆ)", value=8),
    ],
    outputs="audio",
    css=custom_css
)

# ๋ฉ”์ธ ์‹คํ–‰
if __name__ == "__main__":
    gr.TabbedInterface(
        [video_search_tab, video_to_audio_tab, text_to_audio_tab],
        ["๋น„๋””์˜ค ๊ฒ€์ƒ‰", "๋น„๋””์˜ค-์˜ค๋””์˜ค ๋ณ€ํ™˜", "ํ…์ŠคํŠธ-์˜ค๋””์˜ค ๋ณ€ํ™˜"],
        css=custom_css
    ).launch(allowed_paths=[output_dir])