File size: 9,413 Bytes
967924e
dbac20f
 
 
 
 
 
c4dd2de
0cdb73b
d2a875e
 
59b0bed
 
 
 
 
 
 
 
c4dd2de
 
 
 
 
 
dbac20f
 
 
 
 
 
 
 
d2a875e
59b0bed
 
 
 
dbac20f
 
59b0bed
 
 
 
 
 
 
 
 
dbac20f
 
d2a875e
dbac20f
 
 
 
 
 
d2a875e
59b0bed
0cdb73b
1354a37
d2a875e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
59b0bed
 
 
 
 
 
 
 
dbac20f
59b0bed
dbac20f
59b0bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
 
 
ba6e005
 
 
 
 
 
 
 
 
 
 
 
 
d2a875e
59b0bed
 
ba6e005
59b0bed
 
 
 
 
 
 
d2a875e
ba6e005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b0bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
77e7170
dbac20f
 
 
d2a875e
 
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac63db
 
 
 
 
 
dbac20f
 
627e0b8
dbac20f
 
 
d2a875e
 
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac63db
dbac20f
 
 
d2a875e
 
 
 
 
59b0bed
 
d2a875e
dbac20f
 
 
 
d2a875e
 
 
 
 
 
 
dbac20f
d2a875e
 
 
dbac20f
 
 
 
d2a875e
 
 
 
 
 
dbac20f
d2a875e
 
dbac20f
 
d2a875e
dbac20f
d2a875e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import spaces
import logging
from datetime import datetime
from pathlib import Path
import gradio as gr
import torch
import torchaudio
import os
import requests
from transformers import pipeline
import tempfile
import numpy as np
from einops import rearrange
import cv2
from scipy.io import wavfile
import librosa
import json
from typing import Optional, Tuple, List
import atexit

try:
    import mmaudio
except ImportError:
    os.system("pip install -e .")
    import mmaudio

from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
                                setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils

# λ‘œκΉ… μ„€μ •
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
log = logging.getLogger()

# CUDA μ„€μ •
if torch.cuda.is_available():
    device = torch.device("cuda")
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    torch.backends.cudnn.benchmark = True
else:
    device = torch.device("cpu")

dtype = torch.bfloat16

# λͺ¨λΈ μ„€μ •
model: ModelConfig = all_model_cfg['large_44k_v2']
model.download_if_needed()
output_dir = Path('./output/gradio')

setup_eval_logging()

# λ²ˆμ—­κΈ° 및 Pixabay API μ„€μ •
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
PIXABAY_API_KEY = "33492762-a28a596ec4f286f84cd328b17"

# CSS μŠ€νƒ€μΌ μ •μ˜
custom_css = """
.gradio-container {
    background: linear-gradient(45deg, #1a1a1a, #2a2a2a);
    border-radius: 15px;
    box-shadow: 0 8px 32px rgba(0,0,0,0.3);
}

.input-container, .output-container {
    background: rgba(255,255,255,0.1);
    backdrop-filter: blur(10px);
    border-radius: 10px;
    padding: 20px;
    transform-style: preserve-3d;
    transition: transform 0.3s ease;
}

.input-container:hover {
    transform: translateZ(20px);
}

.gallery-item {
    transition: transform 0.3s ease;
    border-radius: 8px;
    overflow: hidden;
}

.gallery-item:hover {
    transform: scale(1.05);
    box-shadow: 0 4px 15px rgba(0,0,0,0.2);
}

.tabs {
    background: rgba(255,255,255,0.05);
    border-radius: 10px;
    padding: 10px;
}

button {
    background: linear-gradient(45deg, #4a90e2, #357abd);
    border: none;
    border-radius: 5px;
    transition: all 0.3s ease;
}

button:hover {
    transform: translateY(-2px);
    box-shadow: 0 4px 15px rgba(74,144,226,0.3);
}
"""

def cleanup_temp_files():
    temp_dir = tempfile.gettempdir()
    for file in os.listdir(temp_dir):
        if file.endswith(('.mp4', '.flac')):
            try:
                os.remove(os.path.join(temp_dir, file))
            except:
                pass

atexit.register(cleanup_temp_files)

def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
    with torch.cuda.device(device):
        seq_cfg = model.seq_cfg
        net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
        net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
        log.info(f'Loaded weights from {model.model_path}')

        feature_utils = FeaturesUtils(
            tod_vae_ckpt=model.vae_path,
            synchformer_ckpt=model.synchformer_ckpt,
            enable_conditions=True,
            mode=model.mode,
            bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
            need_vae_encoder=False
        ).to(device, dtype).eval()

        return net, feature_utils, seq_cfg

net, feature_utils, seq_cfg = get_model()


# search_videos ν•¨μˆ˜ μˆ˜μ •
@torch.no_grad()
def search_videos(query):
    try:
        # CPUμ—μ„œ λ²ˆμ—­ μ‹€ν–‰
        query = translate_prompt(query)
        return search_pixabay_videos(query, PIXABAY_API_KEY)
    except Exception as e:
        logging.error(f"Video search error: {e}")
        return []

# translate_prompt ν•¨μˆ˜λ„ μˆ˜μ •
def translate_prompt(text):
    try:
        if text and any(ord(char) >= 0x3131 and ord(char) <= 0xD7A3 for char in text):
            # CPUμ—μ„œ λ²ˆμ—­ μ‹€ν–‰
            with torch.no_grad():
                translation = translator(text)[0]['translation_text']
            return translation
        return text
    except Exception as e:
        logging.error(f"Translation error: {e}")
        return text

# λ””λ°”μ΄μŠ€ μ„€μ • λΆ€λΆ„ μˆ˜μ •
if torch.cuda.is_available():
    device = torch.device("cuda")
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    torch.backends.cudnn.benchmark = True
else:
    device = torch.device("cpu")

# λ²ˆμ—­κΈ° μ„€μ • μˆ˜μ •
translator = pipeline("translation", 
                     model="Helsinki-NLP/opus-mt-ko-en", 
                     device="cpu")  # λͺ…μ‹œμ μœΌλ‘œ CPU 지정



def search_pixabay_videos(query, api_key):
    try:
        base_url = "https://pixabay.com/api/videos/"
        params = {
            "key": api_key,
            "q": query,
            "per_page": 80
        }
        
        response = requests.get(base_url, params=params)
        if response.status_code == 200:
            data = response.json()
            return [video['videos']['large']['url'] for video in data.get('hits', [])]
        return []
    except Exception as e:
        logging.error(f"Pixabay API error: {e}")
        return []


@spaces.GPU
@torch.inference_mode()
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
                   cfg_strength: float, duration: float):
    prompt = translate_prompt(prompt)
    negative_prompt = translate_prompt(negative_prompt)

    rng = torch.Generator(device=device)
    rng.manual_seed(seed)
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    clip_frames, sync_frames, duration = load_video(video, duration)
    clip_frames = clip_frames.unsqueeze(0)
    sync_frames = sync_frames.unsqueeze(0)
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

    audios = generate(clip_frames,
                      sync_frames, [prompt],
                      negative_text=[negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=cfg_strength)
    audio = audios.float().cpu()[0]

    video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
    make_video(video,
               video_save_path,
               audio,
               sampling_rate=seq_cfg.sampling_rate,
               duration_sec=seq_cfg.duration)
    return video_save_path

@spaces.GPU
@torch.inference_mode()
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
                  duration: float):
    prompt = translate_prompt(prompt)
    negative_prompt = translate_prompt(negative_prompt)

    rng = torch.Generator(device=device)
    rng.manual_seed(seed)
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    clip_frames = sync_frames = None
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

    audios = generate(clip_frames,
                      sync_frames, [prompt],
                      negative_text=[negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=cfg_strength)
    audio = audios.float().cpu()[0]

    audio_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.flac').name
    torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
    return audio_save_path

# μΈν„°νŽ˜μ΄μŠ€ μ •μ˜
video_search_tab = gr.Interface(
    fn=search_videos,
    inputs=gr.Textbox(label="검색어 μž…λ ₯"),
    outputs=gr.Gallery(label="검색 κ²°κ³Ό", columns=4, rows=20),
    css=custom_css,
    api_name=False
)

video_to_audio_tab = gr.Interface(
    fn=video_to_audio,
    inputs=[
        gr.Video(label="λΉ„λ””μ˜€"),
        gr.Textbox(label="ν”„λ‘¬ν”„νŠΈ"),
        gr.Textbox(label="λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈ", value="music"),
        gr.Number(label="μ‹œλ“œ", value=0),
        gr.Number(label="μŠ€ν… 수", value=25),
        gr.Number(label="κ°€μ΄λ“œ 강도", value=4.5),
        gr.Number(label="길이(초)", value=8),
    ],
    outputs="playable_video",
    css=custom_css
)

text_to_audio_tab = gr.Interface(
    fn=text_to_audio,
    inputs=[
        gr.Textbox(label="ν”„λ‘¬ν”„νŠΈ"),
        gr.Textbox(label="λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈ"),
        gr.Number(label="μ‹œλ“œ", value=0),
        gr.Number(label="μŠ€ν… 수", value=25),
        gr.Number(label="κ°€μ΄λ“œ 강도", value=4.5),
        gr.Number(label="길이(초)", value=8),
    ],
    outputs="audio",
    css=custom_css
)

# 메인 μ‹€ν–‰
if __name__ == "__main__":
    gr.TabbedInterface(
        [video_search_tab, video_to_audio_tab, text_to_audio_tab],
        ["λΉ„λ””μ˜€ 검색", "λΉ„λ””μ˜€-μ˜€λ””μ˜€ λ³€ν™˜", "ν…μŠ€νŠΈ-μ˜€λ””μ˜€ λ³€ν™˜"],
        css=custom_css
    ).launch(allowed_paths=[output_dir])