File size: 3,739 Bytes
7d48fbe c311b69 fcb8c81 7d48fbe fcb8c81 7d48fbe 0914710 c311b69 0914710 c311b69 0914710 c311b69 0914710 7d48fbe 5350122 0914710 7d48fbe c311b69 7d48fbe 0914710 c311b69 0914710 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
from datetime import datetime
from lisa_on_cuda.utils import app_helpers
from samgis_core.utilities.type_hints import LlistFloat, DictStrInt
from samgis_lisa_on_cuda import app_logger
from samgis_lisa_on_cuda.io.geo_helpers import get_vectorized_raster_as_geojson
from samgis_lisa_on_cuda.io.raster_helpers import write_raster_png, write_raster_tiff
from samgis_lisa_on_cuda.io.tms2geotiff import download_extent
from samgis_lisa_on_cuda.prediction_api.global_models import models_dict
from samgis_lisa_on_cuda.utilities.constants import DEFAULT_URL_TILES
msg_write_tmp_on_disk = "found option to write images and geojson output..."
def lisa_predict(
bbox: LlistFloat,
prompt: str,
zoom: float,
inference_function_name_key: str = "lisa",
source: str = DEFAULT_URL_TILES,
source_name: str = None
) -> DictStrInt:
"""
Return predictions as a geojson from a geo-referenced image using the given input prompt.
1. if necessary instantiate a segment anything machine learning instance model
2. download a geo-referenced raster image delimited by the coordinates bounding box (bbox)
3. get a prediction image from the segment anything instance model using the input prompt
4. get a geo-referenced geojson from the prediction image
Args:
bbox: coordinates bounding box
prompt: machine learning input prompt
zoom: Level of detail
inference_function_name_key: machine learning model name
source: xyz
source_name: name of tile provider
Returns:
Affine transform
"""
from os import getenv
app_logger.info("start lisa inference...")
if models_dict[inference_function_name_key]["inference"] is None:
app_logger.info(f"missing inference function {inference_function_name_key}, instantiating it now!")
parsed_args = app_helpers.parse_args([])
inference_fn = app_helpers.get_inference_model_by_args(parsed_args)
models_dict[inference_function_name_key]["inference"] = inference_fn
app_logger.debug(f"using a {inference_function_name_key} instance model...")
inference_fn = models_dict[inference_function_name_key]["inference"]
pt0, pt1 = bbox
app_logger.info(f"tile_source: {source}: downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.")
img, transform = download_extent(w=pt1[1], s=pt1[0], e=pt0[1], n=pt0[0], zoom=zoom, source=source)
app_logger.info(
f"img type {type(img)} with shape/size:{img.size}, transform type: {type(transform)}, transform:{transform}.")
folder_write_tmp_on_disk = getenv("WRITE_TMP_ON_DISK", "")
prefix = f"w{pt1[1]},s{pt1[0]},e{pt0[1]},n{pt0[0]}_"
if bool(folder_write_tmp_on_disk):
now = datetime.now().strftime('%Y%m%d_%H%M%S')
app_logger.info(msg_write_tmp_on_disk + f"with coords {prefix}, shape:{img.shape}, {len(img.shape)}.")
if img.shape and len(img.shape) == 2:
write_raster_tiff(img, transform, f"{prefix}_{now}_", f"raw_tiff", folder_write_tmp_on_disk)
if img.shape and len(img.shape) == 3 and img.shape[2] == 3:
write_raster_png(img, transform, f"{prefix}_{now}_", f"raw_img", folder_write_tmp_on_disk)
else:
app_logger.info("keep all temp data in memory...")
app_logger.info(f"source_name:{source_name}, source_name type:{type(source_name)}.")
embedding_key = f"{source_name}_z{zoom}_{prefix}"
_, mask, output_string = inference_fn(prompt, img, app_logger, embedding_key)
# app_logger.info(f"created {n_predictions} masks, preparing conversion to geojson...")
return {
"output_string": output_string,
**get_vectorized_raster_as_geojson(mask, transform)
}
|