|
from datetime import datetime |
|
|
|
from lisa_on_cuda.utils import app_helpers |
|
from samgis_core.utilities.type_hints import LlistFloat, DictStrInt |
|
from samgis_lisa_on_cuda import app_logger |
|
from samgis_lisa_on_cuda.io.geo_helpers import get_vectorized_raster_as_geojson |
|
from samgis_lisa_on_cuda.io.raster_helpers import write_raster_png, write_raster_tiff |
|
from samgis_lisa_on_cuda.io.tms2geotiff import download_extent |
|
from samgis_lisa_on_cuda.prediction_api.global_models import models_dict |
|
from samgis_lisa_on_cuda.utilities.constants import DEFAULT_URL_TILES |
|
|
|
msg_write_tmp_on_disk = "found option to write images and geojson output..." |
|
|
|
|
|
def lisa_predict( |
|
bbox: LlistFloat, |
|
prompt: str, |
|
zoom: float, |
|
inference_function_name_key: str = "lisa", |
|
source: str = DEFAULT_URL_TILES, |
|
source_name: str = None |
|
) -> DictStrInt: |
|
""" |
|
Return predictions as a geojson from a geo-referenced image using the given input prompt. |
|
|
|
1. if necessary instantiate a segment anything machine learning instance model |
|
2. download a geo-referenced raster image delimited by the coordinates bounding box (bbox) |
|
3. get a prediction image from the segment anything instance model using the input prompt |
|
4. get a geo-referenced geojson from the prediction image |
|
|
|
Args: |
|
bbox: coordinates bounding box |
|
prompt: machine learning input prompt |
|
zoom: Level of detail |
|
inference_function_name_key: machine learning model name |
|
source: xyz |
|
source_name: name of tile provider |
|
|
|
Returns: |
|
Affine transform |
|
""" |
|
from os import getenv |
|
|
|
app_logger.info("start lisa inference...") |
|
if models_dict[inference_function_name_key]["inference"] is None: |
|
app_logger.info(f"missing inference function {inference_function_name_key}, instantiating it now!") |
|
parsed_args = app_helpers.parse_args([]) |
|
inference_fn = app_helpers.get_inference_model_by_args(parsed_args) |
|
models_dict[inference_function_name_key]["inference"] = inference_fn |
|
app_logger.debug(f"using a {inference_function_name_key} instance model...") |
|
inference_fn = models_dict[inference_function_name_key]["inference"] |
|
|
|
pt0, pt1 = bbox |
|
app_logger.info(f"tile_source: {source}: downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.") |
|
img, transform = download_extent(w=pt1[1], s=pt1[0], e=pt0[1], n=pt0[0], zoom=zoom, source=source) |
|
app_logger.info( |
|
f"img type {type(img)} with shape/size:{img.size}, transform type: {type(transform)}, transform:{transform}.") |
|
folder_write_tmp_on_disk = getenv("WRITE_TMP_ON_DISK", "") |
|
prefix = f"w{pt1[1]},s{pt1[0]},e{pt0[1]},n{pt0[0]}_" |
|
if bool(folder_write_tmp_on_disk): |
|
now = datetime.now().strftime('%Y%m%d_%H%M%S') |
|
app_logger.info(msg_write_tmp_on_disk + f"with coords {prefix}, shape:{img.shape}, {len(img.shape)}.") |
|
if img.shape and len(img.shape) == 2: |
|
write_raster_tiff(img, transform, f"{prefix}_{now}_", f"raw_tiff", folder_write_tmp_on_disk) |
|
if img.shape and len(img.shape) == 3 and img.shape[2] == 3: |
|
write_raster_png(img, transform, f"{prefix}_{now}_", f"raw_img", folder_write_tmp_on_disk) |
|
else: |
|
app_logger.info("keep all temp data in memory...") |
|
|
|
app_logger.info(f"source_name:{source_name}, source_name type:{type(source_name)}.") |
|
embedding_key = f"{source_name}_z{zoom}_{prefix}" |
|
_, mask, output_string = inference_fn(prompt, img, app_logger, embedding_key) |
|
|
|
return { |
|
"output_string": output_string, |
|
**get_vectorized_raster_as_geojson(mask, transform) |
|
} |
|
|